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Abstract 10 

Subtidal marine sediments are one of the planet’s primary carbon stores and strongly influence 11 

the oceanic sink for atmospheric CO2. By far the most pervasive human activity occurring on 12 

the seabed is bottom trawling and dredging for fish and shellfish. A global first-order estimate 13 

suggested mobile demersal fishing activities may cause 160-400 Mt of organic carbon (OC) 14 

to be remineralised annually from seabed sediment carbon stores. There are, however, many 15 

uncertainties in this calculation. Here, we discuss the potential drivers of change in seabed 16 

OC stores due to mobile demersal fishing activities and conduct a systematic review, 17 

synthesising studies where this interaction has been directly investigated. Mobile demersal 18 

fishing would be expected to reduce OC in seabed stores, albeit with site-specific variability. 19 

Reductions would occur due to lower production of flora and fauna, the loss of fine flocculent 20 

material, increased sediment resuspension, mixing and transport, and increased oxygen 21 

exposure. This would be offset to some extent by reduced faunal bioturbation and respiration, 22 

increased off-shelf transport and increases in primary production from the resuspension of 23 

nutrients. Studies which directly investigated the impact of demersal fishing on OC stocks had 24 

mixed results. A finding of no significant effect was reported in 51% of 59 experimental 25 

contrasts; 41% reported lower OC due to fishing activities, with 8% reporting higher OC. In 26 

relation to remineralisation rates within the seabed, 14 experimental contrasts reported that 27 

demersal fishing activities decreased remineralisation, with four reporting higher 28 

remineralisation rates. The direction of effects was related to sediment type, impact duration, 29 

study design and local hydrography. More evidence is urgently needed to accurately quantify 30 

the impact of anthropogenic physical disturbance on seabed carbon in different environmental 31 

settings, and incorporate full evidence-based carbon considerations into global seabed 32 

management.  33 
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1. Introduction 35 

 36 

Through a mixture of physical, chemical and biological processes, the ocean has absorbed 37 

~40% of anthropogenic CO2 emissions since the industrial revolution (Gruber et al. 2019, 38 

Watson et al. 2020). The term “blue carbon” describes the ability of marine ecosystems to 39 

absorb CO2 from the atmosphere or water column, assimilate this inorganic carbon (IC) into 40 

organic compounds and isolate it from remineralisation for centennial to millennial time-scales 41 

(Nellemann et al. 2009). This process of carbon capture is key to maintaining the ecological 42 

functioning of the ocean (Bauer et al. 2013) and is beneficial as a sink for anthropogenic CO2 43 

(Khatiwala et al. 2009, Gruber et al. 2019).  44 

 45 

Research on blue carbon initially focused on the coastal vegetated habitats of mangroves, 46 

seagrass and saltmarsh, due to their ability to fix CO2 directly, store high concentrations of 47 

organic carbon (OC) in-situ within underlying sediments and to accrete this OC indefinitely 48 

over time (McLeod et al. 2011, Duarte et al. 2013). Although these habitats are some of the 49 

most intense OC sinks on the planet (Duarte et al. 2013), with sequestration rates considerably 50 

higher than forests on land (McLeod et al. 2011), their limited spatial scale of approximately 1 51 

million km2 or ~0.2% of the ocean’s surface, means they only contain a small proportion of the 52 

ocean’s total OC stock (Nellemann et al. 2009, Duarte et al. 2013, Duarte 2017, Howard et al. 53 

2017, Atwood et al. 2020). 54 

 55 

By far the largest mass of OC occurs in the pelagic zone (Nellemann et al. 2009), with much 56 

of this in flux between the oceanic IC pool and the atmosphere (Bauer et al. 2013). However, 57 

at depths below 1000 m, pelagic OC may become isolated from atmospheric exchange 58 

processes for centennial time scales (Caldeira et al. 2002, Nellemann et al. 2009, Krause-59 

Jensen and Duarte 2016). How this should be accounted for remains a matter of debate, and 60 

so pelagic OC is rarely used in the quantification or classification of blue carbon (Lovelock and 61 

Duarte 2019). That withstanding, subtidal marine sediments contain the ocean’s biggest OC 62 

store, estimated to hold ~87 Gt of OC in the upper 5 cm (Lee et al. 2019) or ~2.3 Tt in the top 63 

1 m (Duarte et al. 2013, Atwood et al. 2020). Quantification of annual sequestration rates in 64 

these sediments is relatively poorly constrained, however they have been estimated globally 65 

at approximately 126 - 350 Mt OC yr-1 (Berner 1982, Seiter et al. 2004, Burdige 2007, Keil 66 

2017, Lee et al. 2019, Smeaton et al. 2021).  67 

 68 

Seabed sediments are subjected to a wide range of direct physical impacts from human 69 

pressures, namely: shipping, mineral extraction, fishing, energy developments, deployment of 70 

cables and pipelines, coastal development, dredging of shipping access channels and 71 
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disposal of dredge spoil (Halpern et al. 2019, O’Hara et al. 2021). By far the most widespread 72 

source of disturbance is bottom trawling and dredging for fish and shellfish (Oberle et al. 73 

2016a, Amoroso et al. 2018, Kroodsma et al. 2018, O’Hara et al. 2021). These pressures are 74 

pervasive and long lasting, with improved technologies over the last two centuries increasing 75 

the spread of mobile fishing gears to deeper waters and much of the global ocean (Roberts 76 

2007, Watson and Morato 2013, Kroodsma et al. 2018). Compared to many other types of 77 

stressors, in intensively fished areas, trawling and dredging can also occur on the same area 78 

of seabed numerous times in a year (Tillin et al. 2006, Hinz et al. 2009, Oberle et al. 2016a).  79 

 80 

Globally, fishing pressure with mobile demersal gear is concentrated in subtidal areas at 81 

depths above 1000 m in coastal habitats and offshore on continental shelves and slopes 82 

(Amoroso et al. 2018, Kroodsma et al. 2018). In total these areas cover around 9% of the 83 

global seabed, yet they store an estimated 360 Gt in their top 1 m of sediment (Atwood et al. 84 

2020). Continental shelf sediments are also highly productive, estimated to sequester up to 85 

86% of all OC that is buried annually in global subtidal sediments (Berner 1982, Seiter et al. 86 

2004, Atwood et al. 2020, Smeaton et al. 2021). 87 

 88 

Mobile demersal fishing activity significantly alters seabed faunal communities (Kaiser et al. 89 

2006, Sciberras et al. 2016, Hiddink et al. 2017), restructures the top layers of benthic 90 

sediments (Trimmer et al. 2005, Puig et al. 2012, Eigaard et al. 2016, Oberle et al. 2016b) and 91 

resuspends large volumes of sediment into the water column (Jones 1992, Ruffin 1998, 92 

Thrush and Dayton 2002, Durrieu de Madron et al. 2005, Martín et al. 2014b, Palanques et al. 93 

2014). However, the net effect of this disturbance on OC stores is poorly resolved. Through 94 

mixing, resuspension and oxidation of surface sediments, along with the disturbance of 95 

benthic communities, fishing likely generates a source of “underwater carbon emissions” via 96 

increased remineralisation of OC, and will also limit future OC sequestration by inhibiting long-97 

term sediment settlement and consolidation (Martín et al. 2014b, Keil 2017, Luisetti et al. 2019, 98 

De Borger et al. 2021, Sala et al. 2021). This disturbance can be expected to increase IC 99 

concentrations in the ocean, and via this, slow the rate of CO2 uptake from the atmosphere, 100 

while contributing to ocean acidification and potentially leading to increased release of oceanic 101 

CO2 to the atmosphere (Khatiwala et al. 2009, Pendleton et al. 2012, Bauer et al. 2013, Keil 102 

2017, Lovelock et al. 2017, Luisetti et al. 2019, LaRowe et al. 2020, Sala et al. 2021). To place 103 

the effect of mobile demersal fishing in full context, it is important to better quantify the impacts 104 

of different pressures on OC storage and to understand how these compare with natural 105 

hydrological disturbances to seabed sediments in different environmental settings 106 

(Winterwerp and Kranenburg 2002, Pusceddu et al. 2005b, Arndt et al. 2013, Rühl et al. 2020). 107 

 108 
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The cycling and storage of OC at the seabed is highly complex and is influenced by: sediment 109 

fauna, flora and microbiome; its lithology and granulometry; and the chemistry, hydrology and 110 

biology of the surrounding water column (Burdige 2007, Bauer et al. 2013, Keil 2017, 111 

Middelburg 2018, Snelgrove et al. 2018, LaRowe et al. 2020, Rühl et al. 2020). With all of 112 

these factors affected by many positive and negative feedback mechanisms, it is challenging 113 

to definitively identify the impact of trawling and dredging on net OC storage (Keil 2017, 114 

Snelgrove et al. 2018, LaRowe et al. 2020, Rühl et al. 2020). In this review we discuss the 115 

potential drivers of change in sediment OC due to mobile demersal fishing activities, and 116 

summarise empirical evidence where their effects on sediment OC has been investigated. We 117 

also discuss recent peer reviewed publications which aim to quantify the impact of mobile 118 

demersal fishing at global, regional and national scales, and highlight why the results must be 119 

viewed with both concern and caution (Luisetti et al. 2019, Paradis et al. 2021, Sala et al. 120 

2021). If seabed sediments were to be recognised as a quantifiable and manageable blue 121 

carbon resource it could unlock huge climate change mitigation potential and carbon financing 122 

opportunities (Avelar et al. 2017, Seddon et al. 2019). 123 

 124 

 125 

2. Links between seabed sediment OC and mobile demersal fishing 126 
 127 

2.1 Production of benthic micro- and macroalgae 128 

Seabed OC is mostly allochthonous, with much of it originating from terrestrial run-off and 129 

primary production in surface waters from phytoplankton, macroalgae and wetland vegetation 130 

(Bauer et al. 2013, Turner 2015, Krause-Jensen and Duarte 2016, LaRowe et al. 2020, Legge 131 

et al. 2020). Through the ocean’s “biological pump” much of this OC will be consumed, 132 

repackaged, excreted or remineralised before a remaining proportion of OC reaches the 133 

seabed (Turner 2015, Keil 2017, Middelburg 2018). On sediments in the euphotic zone, some 134 

OC is autochthonous – i.e. produced in-situ by microphytobenthos, and by macroalgae found 135 

on more stable sediments, hard substrate or attached to biogenic material (MacIntyre et al. 136 

1996, Gattuso et al. 2006). 137 

 138 

While the impact of mobile demersal fishing on benthic algae is little studied, it is known that 139 

benthic macroalgae are easily damaged by physical disturbance, and the structure and 140 

abundance of microphytobenthos is highly dependent on both natural and anthropogenic 141 

perturbation (MacIntyre et al. 1996, Fragkopoulou et al. 2021). In general, mobile demersal 142 

fishing is expected to lead to a reduction in algal cover and sediment surface chlorophyll a 143 

concentration (Fig. 1a) (Mayer et al. 1991, MacIntyre et al. 1996, Watling et al. 2001, Tiano et 144 

al. 2019, Fragkopoulou et al. 2021). For example, scallop dredging at depths of 8-15 m in the 145 
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Damariscotta River Estuary  of the Northwest Atlantic led to clear visual disturbance of diatom 146 

matts and caused a significant reduction in chlorophyll a concentration (Mayer et al. 1991, 147 

Watling et al. 2001). Among algae, kelp and coralline algae can require years and decades 148 

respectively, to recover following disturbance (Dayton et al. 1992, Fragkopoulou et al. 2021). 149 

By contrast ephemeral macroalgae and microphytobenthos can recover quickly, especially 150 

from less chronic disturbance (MacIntyre et al. 1996, Ordines et al. 2017). For example, in the 151 

Pesquera Rica trawling grounds of the Balearic Islands, red algae beds of Peyssonneliaceae 152 

and Corallinophycidae persist within trawled areas, although their biomass is around 39-47% 153 

lower compared to untrawled areas (Ordines et al. 2017).  154 

 155 

In some cases, especially in oligotrophic environments, disturbance from mobile demersal 156 

fishing may release nutrients from sub-surface sediments and promote primary production, 157 

increasing the density of microphytobenthos (Fig. 1a) (Fanning et al. 1982, Falcão et al. 2003, 158 

Dounas et al. 2007, Palanques et al. 2014). Counteracting this, sediment suspended by fishing 159 

increases turbidity (Ruffin 1998, Palanques et al. 2001) which reduces light penetration and 160 

thus photosynthetic rates (Fig. 1a) (MacIntyre et al. 1996). For example, there are contrasting 161 

results from fishing impact studies within the Northeast Atlantic. Experimental trawling activity 162 

in the Frisian Front significantly reduced chlorophyll a concentration at the sediment surface 163 

(Tiano et al. 2019), whereas investigations over a range of trawling intensities in muddy 164 

sediments of the Irish Sea found a positive correlation between chlorophyll a concentration 165 

and fishing frequency (Sciberras et al. 2016). 166 

 167 

In most settings, high frequency mobile demersal fishing would be expected to reduce the 168 

abundance of benthic flora on euphotic sediments and to therefore limit the quantity of OC 169 

stored directly, and via secondary production (Fig. 1a) (Miller et al. 1996, Middelburg 2018, 170 

Mandal et al. 2021). Additionally, benthic micro- and macroalgae are known to increase the 171 

stability and accumulation rate of seabed sediments (Yallop et al. 1994, Miller et al. 1996), a 172 

primary driver of OC burial and storage (Middelburg 2018, LaRowe et al. 2020). This 173 

represents a further mechanism through which disturbance of benthic algae from mobile 174 

demersal fishing would limit the potential sequestration rate of OC within sedimentary seabed 175 

habitats (Fig. 1a). 176 

 177 

2.2 Benthic faunal production and processing of OC 178 

The impact of mobile demersal fishing gears on benthic fauna has been widely studied. Long-179 

term effects on community structure and faunal biomass are site-specific and fishing gear 180 

dependent (Collie et al. 2000, Kaiser et al. 2002, Thrush and Dayton 2002, Kaiser et al. 2006, 181 

Hiddink et al. 2017, Sciberras et al. 2018). Gears which penetrate most deeply into sediment, 182 
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such as dredges and hydraulic gears, tend to have greater impact than gears with less 183 

penetration, such as demersal seines and otter trawls (Collie et al. 2000, Kaiser et al. 2006, 184 

Hiddink et al. 2017, Sciberras et al. 2018), although habitat type also has an influence 185 

(Rijnsdorp et al. 2020). The largest impacts follow initial experimental trawling events or are 186 

seen when comparisons are made to an area of long standing protection (Thrush and Dayton 187 

2002, Cook et al. 2013). Many studies may underestimate the damage done by mobile fishing 188 

gears and overestimate speed of recovery because they measure recovery of areas already 189 

impacted (Collie et al. 2000, Kaiser et al. 2002, Kaiser et al. 2006, Hinz et al. 2009, Cook et 190 

al. 2013, Hiddink et al. 2017, Sciberras et al. 2018).  191 

 192 

To a greater or lesser extent, bottom trawling and dredging reduce total benthic biomass and 193 

production of benthic fauna and cause loss in abundance and diversity of sessile epifauna and 194 

long-lived shallow burrowing infauna (Kaiser et al. 2002, Queirós et al. 2006, Tillin et al. 2006, 195 

Sciberras et al. 2018, Tiano et al. 2020). Long-term fishing with mobile gears leads to 196 

preponderance of small-bodied, opportunistic, motile infauna, and larger, highly vagrant, 197 

scavenging macrofauna (Kaiser et al. 2002, Thrush and Dayton 2002, Kaiser et al. 2006, Tillin 198 

et al. 2006). But even within the largely resistant opportunistic meiofauna, mobile demersal 199 

fishing still affects diversity and community structure (Schratzberger et al. 2009, Pusceddu et 200 

al. 2014).  201 

 202 

Benthic fauna are primary drivers of carbon cycling in sediments (Middelburg 2018, Snelgrove 203 

et al. 2018, LaRowe et al. 2020, Rühl et al. 2020). For example, in a well-studied area off 204 

Vancouver Island, taxonomic and functional richness of benthic fauna explained a similar 205 

proportion of variance in pelagic-benthic nutrient flux (~20%) when compared to a suite of 206 

environmental variables (Belley and Snelgrove 2016, 2017). Much of the OC that reaches the 207 

seabed is directly consumed by deposit and suspension feeding fauna, and is thereafter 208 

incorporated into biomass, expelled as faeces and pseudofaeces, or metabolised and 209 

remineralised through respiration (Arndt et al. 2013, Keil 2017, Middelburg 2018, Snelgrove 210 

et al. 2018, Rühl et al. 2020). While respiration reduces the concentration of OC available for 211 

burial and storage, the consumption and processing of OC by benthic fauna may increase 212 

proportions of refractory compounds resistant to microbial decomposition, or form specific OC-213 

mineral interactions which can isolate the OC from remineralisation processes, thus improving 214 

the potential for burial and long-term storage (Fig. 1b) (Arndt et al. 2013, Middelburg 2018, 215 

LaRowe et al. 2020).  216 

 217 

Bioturbation and bio-irrigation activities generally increase OC remineralisation due to 218 

oxygenation of surface sediments and an increase in the concentration of other electron 219 
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acceptors, therefore promoting microbial degradation (Fig. 1b) (Hulthe et al. 1998, Arndt et al. 220 

2013, Keil 2017, Snelgrove et al. 2018, LaRowe et al. 2020). However, these activities also 221 

transport OC rich surface sediments to deeper sediment layers, potentially increasing their 222 

chance of burial and long-term storage (Fig. 1b) (van der Molen et al. 2012, Middelburg 2018, 223 

Snelgrove et al. 2018, Rühl et al. 2020, De Borger et al. 2021). For example, in the North Sea, 224 

bioturbation by infauna has been found to promote remineralisation by exposing buried 225 

material to oxygen (Hulthe et al. 1998) while also being significant in moving carbon from the 226 

surface to deeper sediment layers (van der Molen et al. 2012, Middelburg 2018). 227 

 228 

The composition and abundance of benthic fauna can also influence the stability and 229 

accumulation rates of sediment, which are key drivers of OC burial and storage (Middelburg 230 

2018, LaRowe et al. 2020). While increased bioturbation activity generally has a destabilising 231 

effect, burrowing fauna can increase the stability and accumulation rate of sediment if there is 232 

an increase in biogenic material such as worm tubes or mucus production, or an increase in 233 

structural complexity at the sediment surface from the presence of sedentary and sessile 234 

epifauna and biogenic habitat (Fig. 1b) (Ekdale et al. 1984, Thrush and Dayton 2002, Roberts 235 

2007, Borsje et al. 2014, Rühl et al. 2020). For example, in fine sands and muds of the 236 

Northeast Atlantic the presence of the tube building polychaete Lanice conchilega can lead to 237 

increased sediment accretion rates due to changes in flow dynamics around the worm tubes, 238 

with impacts on sedimentation dynamics beyond the biogenic structure and over a longer 239 

duration than the lifetime of the individual worm (Borsje et al. 2014). In contrast, in the same 240 

habitat the density of the Manila clam (Ruditapes philippinarum) was positively correlated to 241 

sediment erosion rates due to enhanced bioturbation activities (Sgro et al. 2005). 242 

 243 

Faunal biomass and production are some of the main contributors of OC in seabed sediments. 244 

Therefore, the expected overall impact of mobile demersal fishing on faunal mediated 245 

processes is a reduction in OC storage, with the effect somewhat offset by reduced 246 

bioturbation and respiration causing lower remineralisation rates. Where the balance lies 247 

depends on the many complex interactions discussed above, which are site-specific.  248 

 249 

 250 

2.3 Alteration to sediment composition 251 

Mobile demersal fishing gears can alter the granulometry, topography and vertical structuring 252 

of seabed sediments (Trimmer et al. 2005, Puig et al. 2012, Martín et al. 2014b, Oberle et al. 253 

2016a, Oberle et al. 2016b), with extent of change influenced by gear used, sediment type, 254 

local hydrology and frequency of fishing (Kaiser et al. 2002, Trimmer et al. 2005, Martín et al. 255 

2014b, Oberle et al. 2016b). Gears that penetrate more deeply into sediment and have a larger 256 
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footprint cause most impact (Kaiser et al. 2002, Martín et al. 2014b, Eigaard et al. 2016). In 257 

highly mobile habitats, the structure and composition of sediment may not be greatly altered 258 

by mobile demersal fishing due to strong natural forcing mechanisms, while those found in 259 

less hydrologically active environments could be highly affected (Kaiser et al. 2002, Trimmer 260 

et al. 2005, Martín et al. 2014b, Oberle et al. 2016b). However, greater sediment mobility may 261 

itself be a consequence of long-term use of mobile fishing gears, due to loss of fauna and flora 262 

that stabilise sediments (Roberts 2007).    263 

 264 

Topographic alterations from mobile fishing gears can consist of visible trawl/dredge tracks 265 

and homogenisation in large-scale seabed topography (Kaiser et al. 2002, Martín et al. 2014b, 266 

Palanques et al. 2014, Eigaard et al. 2016, Oberle et al. 2016a, Oberle et al. 2016b, Tiano et 267 

al. 2020). For example, multibeam surveys have shown that chronic trawling on the continental 268 

slopes of the Palamós canyon in the Northwest Mediterranean has had drastic flattening 269 

effects on soft sediments (Puig et al. 2012). Mobile demersal fishing also mixes and overturns 270 

the top layer of seabed, generally causing a homogenisation of the sediment structure and an 271 

increase in density of surface sediments (Martín et al. 2014a, Pusceddu et al. 2014, Oberle et 272 

al. 2016b, Paradis et al. 2019). The sediment’s vertical profile can also be altered, with an 273 

increase in coarse material towards the surface, caused by winnowing, resuspension and loss 274 

of fine material (Fig. 1c) (Martín et al. 2014a, Martín et al. 2014b, Palanques et al. 2014, 275 

Pusceddu et al. 2014, Mengual et al. 2016, Oberle et al. 2016b, Paradis et al. 2019). If the 276 

local hydrology is relatively depositional, the sediment may be overlain by a surface layer of 277 

fine material from the re-deposition of fine sediment which has been re-suspended from 278 

deeper layers (Palanques et al. 2014, Oberle et al. 2016b, Tiano et al. 2020). On the Northwest 279 

Iberian shelf, all these processes and impacts were identified within a study across different 280 

trawling intensities and environmental settings, highlighting the complexity in predicting fine-281 

scale effects of mobile demersal fishing on sediment structure (Oberle et al. 2016b). 282 

 283 

The loss of fine, flocculent material and OC-mineral interactions via mobile demersal fishing 284 

is another mechanism by which OC sequestration could be reduced (Fig. 1c) (Martín et al. 285 

2014b, Pusceddu et al. 2014, Oberle et al. 2016a). The physical mixing of surface sediments 286 

generally causes an increase in oxygen penetration (Martín et al. 2014a, Tiano et al. 2019, 287 

De Borger et al. 2021), resulting in reduced OC-mineral interactions (Arnarson and Keil 2007, 288 

Estes et al. 2019) and increased microbial respiration and remineralisation (Fig. 1c) 289 

(Kristensen et al. 1995, Dauwe et al. 2001, Keil 2017, van de Velde et al. 2018). The process 290 

of physical encapsulation of OC by sediment particles and the resultant protection from 291 

remineralisation, is seen as a key process in long term OC storage (Burdige 2007, Arndt et al. 292 

2013, Estes et al. 2019, LaRowe et al. 2020). For example, in sediment samples from the 293 
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Northeast Pacific coasts of Mexico and Washington state, 50% of the oldest OC stores were 294 

sorbed to mineral surfaces (Arnarson and Keil 2007).  295 

 296 

Further, due to their often biological origin, fine grained sediments such as silts and clays 297 

typically have higher concentrations of OC compared to habitats dominated by sand and 298 

coarse sediment (Burdige 2007, Paradis et al. 2021, Smeaton et al. 2021). As mobile demersal 299 

fishing generally exposes or suspends fine material, this would tend to reduce overall OC 300 

storage through resuspension, oxidation and remineralisation (Fig. 1c). Finally, mobile 301 

demersal fishing can lead to “organic matter priming”, whereby more easily degraded “labile” 302 

OC at the surface is mixed with less easily degraded “recalcitrant” material. This can lead to 303 

significantly increased total OC remineralisation rates, although the process is known to vary 304 

between environmental settings (van Nugteren et al. 2009, Bengtsson et al. 2018, Riekenberg 305 

et al. 2020). 306 

 307 

2.4 Sediment resuspension and transport 308 

Large volumes of seabed sediments are sufficiently dynamic to be moved laterally and 309 

vertically, and become resuspended in the water column by tides, waves and storms (Soulsby 310 

1997, Winterwerp and Kranenburg 2002, Ferré et al. 2008). Mobile demersal fishing activities 311 

have at times been shown to exceed, or be a large contributor to, the quantities of sediment 312 

displaced by natural forcing mechanisms (Jones 1992, Pusceddu et al. 2005b, Ferré et al. 313 

2008, Martín et al. 2014b, Pusceddu et al. 2015, Mengual et al. 2016, Oberle et al. 2016a, 314 

Paradis et al. 2018). Magnitudes involved are highly dependent on depth, gear and sediment 315 

type, with deeper penetrating gears and finer sediments causing larger dispersed volumes 316 

(Churchill 1989, Ruffin 1998, Durrieu de Madron et al. 2005, Pusceddu et al. 2005b, Ferré et 317 

al. 2008, O’Neill and Summerbell 2011, Martín et al. 2014b, Palanques et al. 2014, Mengual 318 

et al. 2016, Oberle et al. 2016a). Depending on local hydrographic conditions, sediment may 319 

remain in suspension for extended periods of time, and can be transported across large 320 

vertical and lateral distances (Durrieu de Madron et al. 2005, Martín et al. 2006, Palanques et 321 

al. 2006, Ferré et al. 2008, Martín et al. 2008, Martín et al. 2014b, Palanques et al. 2014, 322 

Pusceddu et al. 2015, Oberle et al. 2016a). In the Northern Mediterranean, otter trawling 323 

resulted in average suspended sediment concentrations ranging between 6 - 50 mg/l, 324 

depending on the study site (Palanques et al. 2001, Durrieu de Madron et al. 2005). The 325 

sediment within the water column was found to persist for up to five days (Palanques et al. 326 

2001), while off-shelf transport was 1.4 - 9 times higher when compared to sediment volumes 327 

without trawling (Ferré et al. 2008, Palanques et al. 2014). The loss of seabed topography, as 328 

discussed above (Puig et al. 2012, Martín et al. 2014b, Oberle et al. 2016b), may also alter 329 
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local-scale hydrographic conditions, increasing sediment boundary water flows and the 330 

magnitude of sediment resuspension (Smith and McLean 1977, Soulsby 1997).  331 

 332 

Natural sediment disturbance during storms is known to stimulate increased water column 333 

microbial production (Cotner et al. 2000) and higher OC remineralisation rates (Wainright and 334 

Hopkinson Jr 1997, Pusceddu et al. 2005b). In general, the resuspension and transport of 335 

sediment from mobile demersal fishing will lead to a reduction in OC content (Pusceddu et al. 336 

2005b, Martín et al. 2006, Pusceddu et al. 2015), largely due to increased oxygen exposure 337 

times and shifts between anoxic and oxic states, which generally increase remineralisation 338 

rates (Fig. 1d) (Kristensen et al. 1995, Hulthe et al. 1998, Dauwe et al. 2001, Keil 2017). 339 

Aerobic remineralisation in marine sediments has been measured at between four and ten 340 

times faster than in anaerobic conditions, however this is known to vary depending on 341 

environmental settings (Kristensen et al. 1995, Hulthe et al. 1998). Fishing induced 342 

disturbance may further promote remineralisation, as sediment which is deposited under oxic 343 

conditions, buried under anoxia and re-exposed to oxygen can promote especially high OC 344 

degradation rates (Hulthe et al. 1998). This has been identified in the biochemical signature 345 

of suspended particulate OC within trawling grounds of the North Mediterranean, with a 346 

significant shift from labile to refractory OC compounds (Pusceddu et al. 2005a, Pusceddu et 347 

al. 2005b, Pusceddu et al. 2015). 348 

 349 

Previous studies have shown that it is challenging to fully quantify the amount of OC that will 350 

be remineralised after disturbance, rather than simply being moved elsewhere (Wainright and 351 

Hopkinson Jr 1997, Pusceddu et al. 2005b, Martín et al. 2006, Martín et al. 2008, Lovelock et 352 

al. 2017). There is also the potential that sediment resuspension from mobile demersal fishing 353 

could increase OC storage in adjacent areas (Fig. 1d). This could occur from higher 354 

sedimentation rates near to fishing grounds leading to increased burial of OC which is already 355 

present within the seabed, or burial of benthic algae and sessile fauna (Churchill 1989, Jones 356 

1992, O’Neill and Summerbell 2011, Oberle et al. 2016a, Sciberras et al. 2016). It could also 357 

lead to transportation of OC-rich shelf and slope sediments (Atwood et al. 2020) to deeper 358 

waters below mixing depths (Fig. 1d) (Caldeira et al. 2002, Martín et al. 2006, Ferré et al. 359 

2008, Martín et al. 2008, Paradis et al. 2018, Legge et al. 2020). Such off-shelf induced 360 

transport of sediment and OC has been recorded as deep as 1750 m in continental slope 361 

trawling grounds of the Palamós canyon in the Northwest Mediterranean (Martín et al. 2006, 362 

Palanques et al. 2006, Martín et al. 2008). 363 

 364 

Overall, increased sediment resuspension from mobile demersal fishing would be expected to 365 

reduce the current store of OC in seabed sediments due to disturbance of accumulations and 366 
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increased oxygen exposure times (Keil 2017, Luisetti et al. 2019, De Borger et al. 2021). 367 

Future sequestration would also be limited as newly settling organic material would be kept in 368 

suspension, precluding it from burial and storage (Churchill 1989, Ruffin 1998, Martín et al. 369 

2014b, Oberle et al. 2016a). The magnitude of impact, however, will be largely based on local 370 

hydrography, which primarily determines the fate of resuspended OC (Wainright and 371 

Hopkinson Jr 1997, Ferré et al. 2008).  372 

 373 

2.5 Alteration in pelagic primary production 374 

As most seabed OC is allochthonous, the total amount which reaches seabed sediments is 375 

strongly driven by the level of primary production in the overlying water column (Seiter et al. 376 

2004, Turner 2015, Atwood et al. 2020). As noted previously, sediment disturbance by mobile 377 

fishing gears, or natural forces, can release significant concentrations of nutrients into the 378 

water column (Fanning et al. 1982, Falcão et al. 2003, Polymenakou et al. 2005, Palanques 379 

et al. 2014). In shallower areas, released nutrients will likely enter into or remain in the euphotic 380 

zone, where their fertilisation effect can increase phytoplankton primary production (Fig. 1e), 381 

(Fanning et al. 1982, Dounas et al. 2007, Palanques et al. 2014). For example, modelling 382 

predictions from trawling experiments in the Eastern Mediterranean at Heraklion Bay, estimate 383 

that nutrient upwelling from bottom trawling could increase net annual primary production by 384 

15% (Dounas et al. 2007) with subsequent settlement raising OC in seabed sediments (Falcão 385 

et al. 2003, Polymenakou et al. 2005, Palanques et al. 2014, Turner 2015). Alongside this, as 386 

discussed for microphytobenthos, demersal fishing activity can also reduce rates of 387 

photosynthesis by increasing turbidity (Fig. 1e), (Ruffin 1998, Palanques et al. 2001, Adriano 388 

et al. 2005, Cloern et al. 2014).  389 

 390 

2.6 The contribution of vertebrate fauna to OC storage 391 

Although not a focus of this review, the removal of vertebrate species by benthic and pelagic 392 

fisheries could influence the mass of OC stored in seabed sediments (Pershing et al. 2010, 393 

Atwood et al. 2015, Mariani et al. 2020). The emerging field of “fish carbon” describes the 394 

contribution of vertebrate fauna to OC storage and sequestration within seabed sediments 395 

from defecation, pelagic mixing, bioturbation, trophic interactions and deadfall (Trueman et al. 396 

2014, Turner 2015, Saba et al. 2021). Although the magnitudes of effect are poorly resolved, 397 

the reduction in population size and average body size of marine vertebrates that results from 398 

over-harvest, is expected to reduce the amount of carbon exported to the seabed (Fig. 1f) 399 

(Pershing et al. 2010, Trueman et al. 2014, Atwood et al. 2015, Mariani et al. 2020). For 400 

example, since 1950, the combined catch of Tuna, Mackerel, Shark and Billfish is estimated 401 

to have prevented approximately 21.8 Mt of OC being stored in seabed sediments (Mariani et 402 

al. 2020). The removal of predatory vertebrates will also cause trophic cascades, potentially 403 
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leading to alterations in benthic faunal communities, triggering the feedback mechanisms on 404 

OC discussed above (Atwood et al. 2015).  405 

 406 

2.7 Interactions and feedback mechanisms 407 

All factors discussed here interact in a variety of positive and negative feedback loops. For 408 

example, alterations in sediment characteristics will influence the community structure of 409 

benthic flora and fauna, and vice versa. Additionally, pelagic primary production, trophic 410 

interactions, and the abundance and community composition of vertebrate fauna will all further 411 

alter benthic population changes induced by mobile demersal fishing. These factors are also 412 

influenced by chemical and physical oceanographic processes that are outside the scope of 413 

this review. The structure and diversity of the microbiome is also strongly influenced by the 414 

composition of benthic flora and fauna (Middelburg 2018, LaRowe et al. 2020, Rühl et al. 415 

2020). However, the microbiome itself can be impacted by mobile demersal fishing activities 416 

adding further complexity to the overall picture (Watling et al. 2001, Polymenakou et al. 2005).  417 

 418 

3. Experimental results 419 

From a systematic literature search (see Supplementary material), 40 peer-reviewed studies 420 

were identified which investigated the impact of mobile demersal fishing on the seabed, and 421 

directly measured OC or organic matter (OM) and/or remineralisation rates in seabed 422 

sediments (Table 1). The 40 studies covered 12 oceanic realms with greatest representation 423 

from the Northeast Atlantic (43%), Mediterranean (23%) and Northwest Atlantic (15%). The 424 

majority of studies (58%) investigated the impacts of commercial fishing activities. The 425 

remainder either used experimental trawling/dredging methods (33%), a mixture of 426 

experimental trawling and monitoring of commercial fishing (5%), or mathematical modelling 427 

of fishing impacts (5%). A variety of experimental setups were employed including impact-428 

control site comparisons (43%), before-after fishing impact (23%), and low-high impact 429 

contrasts which lacked controls (20%). Additionally, 13% of studies used a before-after 430 

control-impact design either alone or in combination with an impact-control experiment; and 431 

one investigated the recovery of seabed sediment OC after a long-term closure to mobile 432 

demersal fishing (Table 1). It should be noted that for many of these studies, in areas 433 

considered “control sites” there is the potential for them to still be affected by mobile demersal 434 

fishing activities. This often occurs due to insufficient monitoring (e.g. no Vessel Monitoring 435 

System data on smaller vessels), lack of enforcement (i.e. within a supposed closed area) or 436 

lack of recovery time since cessation of fishing, particularly given the long timescales of 437 

recovery expected for many habitats (Roberts 2007).  438 

 439 
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Of the 40 studies identified, 11 investigated the effect of mobile demersal fishing across 440 

multiple sites, habitat types or gear-types, and made inferences for each investigation 441 

separately (Table 1); this produced a total of 62 experimental contrasts (Table S1). Of these, 442 

59 measured changes in OC/OM concentration. A finding of no significant effect was reported 443 

in 51% of contrasts; 41% reported lower OC in fished sites compared to unfished control sites 444 

(or in areas with higher fishing intensities), with 8% reporting higher OC (Table S1).  445 

 446 

Studies which reported a negative impact from mobile demersal fishing on OC generally 447 

occurred in muddy sediments, while those which reported higher OC in response to this 448 

disturbance, or no effect, occurred in a mixture of sandy and muddy sediments (Table S1). On 449 

average, the duration of impact was higher for studies which reported a negative effect of 450 

demersal fishing on OC, when compared to those which reported a positive or non-significant 451 

effect, with estimated values of median impact duration at 36 months and 18 months 452 

respectively (Table S1). Most that reported a negative impact from demersal fishing were 453 

Impact-Control studies (75%) or Before-After fishing impact studies (13%). In contrast, those 454 

that reported no significant effects were predominantly Low-High impact studies lacking 455 

controls (43%) and Impact-Control studies (27%). The 5 studies which reported an increase 456 

in OC were relatively evenly spread between Impact-Control designs (60%) and Before-After 457 

designs (40%). The median depth at which the research was conducted was relatively similar 458 

between different experimental outcomes, with median depths of 22 m, 31 m and 20 m, for 459 

studies which reported a decrease, no significant effect, and an increase in OC respectively 460 

(Table S1).  461 

 462 

Within the literature examined, there were 18 inferences about the impact of mobile demersal 463 

fishing pressure on sediment carbon remineralisation rate. Of these, 78% reported that 464 

demersal fishing activity decreased remineralisation rate in seabed sediments, with the rest 465 

concluding opposite (Table S1). Although no clear trend was identified between studies, it 466 

seems the result is highly dependent on local hydrographic conditions. For example, in more 467 

depositional environments, mobile demersal fishing may cause oxygenation of sediments and 468 

redeposition of recently expulsed organic material back to the seabed, leading to an increase 469 

in remineralisation rate (Duplisea et al. 2001, Polymenakou et al. 2005, van de Velde et al. 470 

2018). In more hydrologically active environments, resuspension and lateral/vertical transport 471 

of sediments would be expected to reduce OC in surface sediments which, along with removal 472 

of fauna, could limit the rate of remineralisation (Pusceddu et al. 2014, Tiano et al. 2019, De 473 

Borger et al. 2021, Morys et al. 2021).  474 

 475 
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The evidence discussed earlier in Section 2 would suggest that removing or reducing 476 

demersal fishing pressure from the seabed would have net benefits to carbon sequestration 477 

and storage. However, the experimental results identified here indicate study-specific and site-478 

specific outcomes. The majority of studies which identified no significant effect in sediment 479 

OC used an experimental design which compared sites with different magnitudes of fishing 480 

impact but lacked controls. There is a clear need for further identification and investigation of 481 

seabed sediment habitats that have had true long-term protection from demersal fishing. 482 

Those studies which reported an increase in OC, or no effect, also generally occurred in 483 

sandier sediments which may be subjected to higher levels of natural disturbance; however, 484 

as highlighted in this review, there will also be sandier areas where the impact of fishing activity 485 

outweighs natural forcing mechanisms. Finally, many of the studies identified in the systematic 486 

review were not primarily designed to investigate the impact of demersal fishing on carbon 487 

storage or remineralisation, although this may not affect the direction of their conclusions. 488 

 489 

 4. Future research  490 

As highlighted by the varied results, there is a clear need for further research into the potential 491 

impact of mobile demersal fishing on OC sequestration and storage in seabed sediments. 492 

Recent first order estimates have suggested that globally, mobile demersal fishing could 493 

remineralise between 160 - 400 Mt of OC from marine sediment stores annually (Sala et al. 494 

2021). It has also been suggested that historical trawling on global continental slopes could 495 

have removed ~6000 Mt of OC from the upper-most centimetre of sediment alone (Paradis et 496 

al. 2021). In addition, it has been estimated that ~2 Mt of OC is remineralised from UK shelf 497 

sediments each year by mobile demersal fishing (Luisetti et al. 2019). Although these 498 

estimates contain large generalisations, their scale reveals the massive potential for mobile 499 

demersal fishing to reduce carbon stores.  500 

 501 

Following disturbance by mobile demersal fishing a proportion of OC will be remineralised in 502 

the benthos or in the water column, however some will simply remain in-situ and be re-buried, 503 

and a further proportion will be transported over a range of distances either being consumed 504 

or re-buried (Pendleton et al. 2012, Lovelock et al. 2017). A key research gap is the 505 

quantification of OC that follows each of these processes in different environmental settings 506 

and under different types of fishing impact. Sala et al. (2021) only account for remineralisation 507 

of disturbed OC which remains in-situ or resettles within 1 km2, as they consider the fate of 508 

sediment which stays in suspension as unknown. In their paper, Sala et al. (2021) consider 509 

that 87% of the OC disturbed remains in-situ or resettles uniformly across global fishing effort, 510 

and of this anything between 1-69.3% will be remineralised, with the magnitude dependent 511 

upon two relatively coarse metrics, namely: estimated proportion of OC which is labile, and 512 
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oceanic basin degradation rate. In contrast, Luisetti et al. (2019) use an upper estimate that 513 

100% of the OC resuspended by mobile demersal fishing will be remineralised, but they do 514 

not consider the fate of OC that is disturbed but remains in-situ. Although both studies give a 515 

representation to the scale of OC which may be lost, improved quantification of these metrics 516 

is clearly needed before accurate measures of OC lost, or inorganic carbon produced, can be 517 

quantified. OC in seabed sediments is not naturally inert, passing through a range of aerobic 518 

and anaerobic remineralisation pathways to varying sediment depths. Thus more 519 

consideration is needed to understand the influence of natural remineralisation rates within 520 

seabed sediments under different environmental settings, and therefore quantify the additional 521 

effect of mobile demersal fishing in each area. In seabed sediment habitats with high 522 

hydrodynamic activity, low deposition rates, and high oxygen penetration depths, the 523 

additional disturbance of demersal fishing on OC may be more limited.  524 

 525 

We must also consider the cumulative or finite nature of disturbance by demersal mobile 526 

fishing on OC stores. It is not clear how much of the estimated 360 Gt of OC in the top 1 m of 527 

sediment is actually under threat (Atwood et al. 2020).  While mobile demersal fishing can only 528 

penetrate between around 2 and 20 cm into the sediment (Hiddink et al. 2017), repeated 529 

chronic impacts may continue to disturb and displace sediment more deeply (Sala et al. 2021). 530 

It is possible, that in chronically fished areas significant further loss of OC stores will not occur 531 

due to historic depletion in OC stocks. However, in such areas carbon sequestration and 532 

accumulation of OC would be limited by the frequency of disturbance to newly settled material 533 

(Sala et al. 2021). By contrast, if new fishing grounds emerge, these could act as huge sources 534 

of carbon emissions as sediment becomes disturbed and OC is remineralised (Gogarty et al. 535 

2020).  536 

 537 

There is also a need to identify a clear baseline from which changes in OC can be measured. 538 

Standing stock of OC in global seabed sediments is relatively well resolved at a number of 539 

spatial scales (e.g. Seiter et al. 2004, Lee et al. 2019, Luisetti et al. 2019, Atwood et al. 2020, 540 

Legge et al. 2020, Diesing et al. 2021, Smeaton et al. 2021). However, precise estimates of 541 

OC remineralisation, accumulation and burial rates are generally lacking (Berner 1982, 542 

Burdige 2007, Keil 2017, Wilkinson et al. 2018, Luisetti et al. 2019, Legge et al. 2020, Diesing 543 

et al. 2021). Any studies which aim to quantify the impact of demersal fishing on carbon 544 

storage and sequestration must therefore quantify both the before and after scenarios for 545 

robust conclusions to be drawn. 546 

 547 

It is important that future research into the impact of mobile demersal fishing on carbon storage 548 

is focused in areas which are expected to contain significant stocks of OC or have large future 549 
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sequestration potential, based on their geographic projections (Atwood et al. 2020), sediment 550 

characteristics (Smeaton et al. 2021) and local hydrology (Lee et al. 2019). Research should 551 

also focus on areas that overlap with significant mobile demersal fishing pressure (Amoroso 552 

et al. 2018, Kroodsma et al. 2018, Sala et al. 2021), and where this can be compared to areas 553 

that could be considered truly “unfished”, either from well enforced protected areas or specific 554 

environmental settings.  555 

 556 

On land, retrospective analyses of changes in human use and vegetation cover have been 557 

critical to estimating how people have altered the planetary carbon cycle. It is vital that this 558 

historical context is considered when further investigating the potential impact of mobile 559 

demersal fishing on global seabed OC sequestration and storage, and the opportunities for 560 

recovery if this pressure is removed. Due to the extended timeframes needed for some seabed 561 

habitats to fully recover, true long-term protection and monitoring of OC is needed to fully 562 

deduce carbon storage potential. Without considering areas of seabed that have experienced 563 

genuine long-term protection, it is not possible to gain a true baseline from which impacts can 564 

be compared (Pinnegar and Engelhard 2008). Within this review, only one study could be 565 

found which looked at the direct recovery of OC in seabed sediments following the medium-566 

to-long term removal of fishing pressure (Wang et al. 2021). Gaining further evidence is vital 567 

to understand how much OC can accumulate when mobile demersal fishing is removed, and 568 

how this may change over the course of recovery. 569 

 570 

5. Concluding remarks 571 

Seabed sediments are one of the planet’s primary OC stores and strongly influence the 572 

oceanic sink for atmospheric CO2 (Gruber et al. 2019, Atwood et al. 2020, Watson et al. 2020, 573 

Sala et al. 2021). It is an urgent priority to better understand the effect of mobile fishing gear 574 

use on seabed OC sequestration and storage, and to incorporate clear blue carbon 575 

considerations into global seabed management. As only around 2-3% of the world’s seabed 576 

is currently closed to trawling and dredging (Roberts et al. 2017, Marine Conservation Institute 577 

2021), increasing the scale of protection could offer huge climate change mitigation potential 578 

and bring corresponding gains in biodiversity (Roberts et al. 2017, Seddon et al. 2019, Roberts 579 

et al. 2020, Sala et al. 2021). Across the world, mobile demersal fisheries are highly fuel 580 

inefficient and produce most of the fishing industry’s direct greenhouse gas emissions (Parker 581 

et al. 2018). A shift to less damaging fishing methods could provide major net benefits for 582 

increasing natural carbon sequestration and storage in the seabed, whilst significantly 583 

reducing emissions of CO2.  584 

 585 
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The results of recent regional and global scale publications which calculated first-order 586 

estimates of CO2 produced from disturbance to seabed sediments by mobile demersal fishing 587 

must be taken with both concern and caution (Luisetti et al. 2019, Paradis et al. 2021, Sala et 588 

al. 2021). As identified in this review, demersal fishing by trawling and dredging is in many 589 

cases likely to limit the storage and sequestration of OC, but to draw firm conclusions more 590 

experimental studies covering a wide range of environmental settings, habitat types and 591 

fishing pressures is required to address the large number of unknowns and site-specific drivers 592 

associated with the status of OC on the seabed.  593 

  594 
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 595 
Figure 1. The effects of mobile demersal fishing activity (right) and absence of demersal 596 
fishing activity (left) on a) benthic algae, b) benthic infauna and epifauna, c) sediment 597 
characteristics, d) sediment dynamics, e) pelagic primary production, f) vertebrate fauna, and 598 
how each of these changes may impact seabed sediment organic carbon (OC) stores. 599 
Addition symbols indicate when a factor/process would be expected to increase in the 600 
presence/absence of fishing; inhibitory arrows indicate when a factor/process would be 601 
expected to decrease. The colour of the addition/inhibition symbols indicates whether this 602 
change is predicted to impact OC sequestration and storage either positively (green) or 603 
negatively (red). Symbols courtesy of Integration and Application Network 604 
(ian.umces.edu/media-library)  605 
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Table 1. Summary of studies which investigated the impact of mobile demersal fishing on the seabed 606 
and directly measured organic carbon (OC) or organic matter (OM), and/or remineralisation rates of 607 
OC/OM in the sediment. The last two columns indicate whether the presence or increase in demersal 608 
fishing activity was reported to cause lower (red), higher (green), no significant effect (orange) or mixed 609 
effects (grey) in the concentration or mass of OC/OM (“OC/OM”), or organic carbon remineralisation 610 
rate (“Remin’ rate”), within seabed sediments.  611 

For “Study type”: BA = Before-after fishing impact, IC = Impact-control site comparison, LH = low to high impacted sites, BACI = before-after control-612 
impact, “Recovery” = change after removal of commercial fishing. For “Impact duration”: those suffixed with “data” indicate where the exact duration 613 
of impact is unknown and the stated time is the period for which data was available “Contrasts” = the number of experimental contrasts conducted 614 
in each study. For “OC/OM” those with an asterisk (*) indicate where further analysis was needed – see Supplementary material. The “OC/OM” 615 
column is empty for Polymenakou et al. (2005) as the result was based on the same data which is reported in Pusceddu et al. (2005a). n.d. = no 616 
data. 617 

Reference Oceanic region Sediment Depth    
(m BCD) 

Gear Study 
type 

Impact type Impact 
duration 

Cont- 
rasts 

OC/ 
OM 

Remin’ 
 rate 

Adriano et al. (2005) N Mediterranean Sandy-mud ~1 Clam dredge BA Commercial fishing 5 yrs 1 I  

Atkinson et al. (2011) SE Atlantic Muddy-sand 346-459 Otter-trawl LH Commercial fishing 1-4 yrs data 1 N  

Bhagirathan et al. (2010) N Indian Mud 15-40 Otter-trawl BA Experimental 15 months 1 D  

Brown et al. (2005) NE Pacific Muddy-sand 25-35 Otter-trawl 
BACI 
IC 

Experimental 
Commercial fishing 

1 day 
10 yrs 

2 
N  

De Borger et al. (2021) NE Atlantic Mud & Sand 9-148 Mixed trawls IC-LH Modelled 15 yrs data 10 D D 

Dolmer et al. (2001) NE Atlantic Muddy-sand 7 Mussel dredge IC Experimental < 1 month 1 N  

Duplisea et al. (2001) NE Atlantic Muddy-sand ~50 Beam trawl IC-LH Modelled n.d. 1  I 

Eleftheriou and Robertson 
(1992) 

NE Atlantic Sand ~7 Scallop dredge BA Experimental 9 days 1 
N  

Ferguson et al. (2020) SW Pacific Muddy-sand 4 Otter trawl BACI Experimental 3 months 1   

Fiordelmondo et al. (2003) N Mediterranean Sand ~2 Clam dredge IC Experimental 1 day 1 D  

Goldberg et al. (2014) NW Atlantic Fine sand 3-5 Hydraulic dredge IC Experimental 1 day 1 N  

Hale et al. (2017) NE Atlantic Mud & Sand 19-29 
Otter trawl & 
Scallop dredge 

LH Commercial fishing 2+ yrs data 2 
M  

Lamarque et al. (2021) NE Atlantic Sandy-mud 33-78 Mixed trawls LH Commercial fishing n.d. 1 *  

Lindeboom and de Groot 
(1998) 

NE Atlantic Mud & Sand 30-75 Mixed trawls 
BACI 
IC 

Experimental 
Commercial fishing 

15 months 
5-50 yrs 

3 
N  

Liu et al. (2011) W Pacific Sandy-mud 20 Mixed trawls IC Commercial fishing 1-2 yrs 1 I  

Martín et al. (2014a) NW Mediterranean Mud 453-591 Otter trawl IC Commercial fishing 3+ yrs data 1 D  

Mayer et al. (1991) NW Atlantic Mud & Mixed 8-20 
Otter trawl & 
Scallop dredge 

IC Experimental 1 day 2 
M  

McLaverty et al. (2020) NE Atlantic Sandy-mud 3-11 Mussel dredge LH Commercial fishing 1.5 yrs data 4 *  

Mercaldo-Allen et al. (2016) NW Atlantic Fine sand 3-5 Hydraulic dredge IC Experimental 1 day 1 I  

Meseck et al. (2014) NW Atlantic Fine sand 5-6 Hydraulic dredge BACI Experimental 1 day 1 N  

Morys et al. (2021) Baltic Muddy-sand 12 Benthic Dredge IC Experimental 1 day 1   

Palanques et al. (2014) NW Mediterranean Mud 40-70 Otter trawl IC Commercial fishing 2 yrs data 1 I  

Paradis et al. (2019) SW Mediterranean Mud 550 Otter trawl IC Commercial fishing 9 yrs data 1 D I 

Paradis et al. (2021) NW Mediterranean Mud 425-494 Otter trawl IC Commercial fishing 1+ yrs data 1 D  

Polymenakou et al. (2005) NE Mediterranean Sandy-mud 30-51 Otter trawl BA Commercial fishing 8 months 1  I 

Pusceddu et al. (2005a) NE Mediterranean Sandy-mud 30-80 Otter trawl BA Commercial fishing 8 months 1 I  

Pusceddu et al. (2014) NW Mediterranean Mud 454-556 Otter trawl IC Commercial fishing 3 yrs data 1 D D 

Rajesh et al. (2019) N Indian Sand 5-35 Beam trawl BA Experimental 4 days 2 D  

Ramalho et al. (2018) NE Atlantic Muddy-sand 285-550 Otter trawl IC Commercial fishing 2+ yrs data 1 D  

Ramalho et al. (2020) NE Atlantic Muddy-sand 285-550 Otter trawl LH Commercial fishing 2+ yrs data 1 N  

Rosli et al. (2016) SW Pacific Sandy-mud 670-1561 Otter trawl LH Commercial fishing 31 yrs data 2 *  

Sciberras et al. (2016) NE Atlantic Mud & Sand 20-43 
Otter trawl & 
Scallop dredge 

LH Commercial fishing 3 yrs data 2 
N  

Serpetti et al. (2013) NE Atlantic Muddy-sand 769-823 Mixed trawls IC Commercial fishing ~10 yrs 1 N  

Sheridan and Doerr (2005) NW Atlantic Mud & Sand 5-20 Otter trawl IC Commercial fishing 7 months 1 N  

Smith (2000) NE Mediterranean Sandy-mud ~200 Otter trawl BACI Commercial fishing 7 months data 1 N  

Tiano et al. (2019) NE Atlantic Muddy-sand 34 Mixed trawls BA Experimental 1 day 2 N D 

Trimmer et al. (2005) NE Atlantic Muddy-sand ~20-80 Beam trawl LH Commercial fishing 3 yrs data 2 *  

van de Velde et al. (2018) NE Atlantic Mud ~7 Unknown BA Commercial fishing < 1 month 1  I 

Wang et al. (2021) W Pacific Mud & Sand 1-28 Mixed trawls Recovery Commercial fishing 2.5 yrs 1 D  

Watling et al. (2001) NW Atlantic Muddy-sand 15 Scallop dredge BA Experimental 1 day 1 *  
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