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Bottom trawling is known to affect benthic faunal communities but its effects on
sediment suspension and seabed biogeochemistry are less well described. In addition,
few studies have been carried out in the Baltic Sea, despite decades of trawling in
this unique brackish environment and the frequent occurrence of trawling in areas
where hypoxia and low and variable salinity already act as ecosystem stressors. We
measured the physical and biogeochemical impacts of an otter trawl on a muddy
Baltic seabed. Multibeam bathymetry revealed a 36 m-wide trawl track, comprising
parallel furrows and sediment piles caused by the trawl doors and shallower grooves
from the groundgear, that displaced 1,000 m3 (500 t) sediment and suspended 9.5 t
sediment per km of track. The trawl doors had less effect than the rest of the gear
in terms of total sediment mass but per m2 the doors had 5× the displacement and
2× the suspension effect, due to their greater penetration and hydrodynamic drag.
The suspended sediment spread >1 km away over the following 3–4 days, creating
a 5–10 m thick layer of turbid bottom water. Turbidity reached 4.3 NTU (7 mgDW
L−1), 550 m from the track, 20 h post-trawling. Particulate Al, Ti, Fe, P, and Mn
were correlated with the spatio-temporal pattern of suspension. There was a pulse of
dissolved N, P, and Mn to a height of 10 m above the seabed within a few hundred
meters of the track, 2 h post-trawling. Dissolved methane concentrations were elevated
in the water for at least 20 h. Sediment biogeochemistry in the door track was still
perturbed after 48 h, with a decreased oxygen penetration depth and nutrient and
oxygen fluxes across the sediment-water interface. These results clearly show the
physical effects of bottom trawling, both on seabed topography (on the scale of km
and years) and on sediment and particle suspension (on the scale of km and days-
weeks). Alterations to biogeochemical processes suggest that, where bottom trawling is
frequent, sediment biogeochemistry may not have time to recover between disturbance
events and elevated turbidity may persist, even outside the trawled area.

Keywords: otter trawl, sediment suspension, turbidity, biogeochemistry, disturbance, nutrients, oxygen,
multibeam echo-sounding
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INTRODUCTION

Bottom trawling is used worldwide as a method of catching
benthic or demersal fish and shellfish and even several decades
ago was estimated to impact an area equivalent to 75% of the
world’s continental shelf (Kaiser et al., 2002). In some coastal
areas, trawling intensity is such that the seabed is trawled more
than 10 times per year (Eigaard et al., 2017) and/or >80%
of the seabed area is trawled every year (Eigaard et al., 2017;
Amoroso et al., 2018).

While effects on benthic community structure are well-
described (Jennings and Kaiser, 1998; Kaiser et al., 2006; Hiddink
et al., 2017; Rijnsdorp et al., 2018), there are fewer studies
on the physical or biogeochemical impacts on the seabed, or
on sediment suspension. Some parts of the fishing gear have
direct contact with the seabed (Ivanović et al., 2011; Martín
et al., 2014). In addition, changes in hydrodynamics and pressure
fields around the towed gear also disturb sediments (O’Neill and
Ivanović, 2016). Physical disturbance of the seabed can either
lead to increased heterogeneity/roughness, e.g., in areas of low
fishing intensity and on flat sedimentary bottoms, or decreased
roughness, e.g., in areas of high fishing intensity and/or where
seafloor structures are leveled (Martín et al., 2014). The parallel
furrows left by trawl door tracks on soft sediments are particularly
easy to detect with acoustic mapping methods, e.g., side-scan
sonar and multibeam, and such tracks can remain for many years
(Krost et al., 1990; Oberle et al., 2018; Bunke et al., 2019).

Disturbance suspends sediment into the water column,
increasing turbidity by orders of magnitude (Black and Parry,
1994; Durrieu de Madron et al., 2005; Dounas, 2006; Dellapenna
et al., 2006; Dounas et al., 2007; O’Neill and Summerbell, 2011;
O’Neill et al., 2013a,b; Mengual et al., 2016) and increasing
sedimentation rates downslope (Puig et al., 2015; Paradis et al.,
2017, 2018), both of which may have negative effects on marine
organisms (Wenger et al., 2017; Magris and Ban, 2019). More
sediment is suspended in areas with a high proportion of silt
and clay (Oberle et al., 2016a). Fine particles can be winnowed
out and advected by currents to other areas (Ferré et al., 2008;
Palanques et al., 2014; Mengual et al., 2016; Oberle et al.,
2016b). In some areas, trawling may contribute significantly to
near-bottom turbidity, sediment suspension, and sedimentation
budgets (Churchill, 1989; Pilskaln et al., 1998; Dellapenna et al.,
2006; Ferré et al., 2008; Bradshaw et al., 2012; Martín et al.,
2014; Paradis et al., 2017; Oberle et al., 2018). Overall effects and
their persistence depend on gear type, sediment type, and natural
sediment dynamics of the area (Oberle et al., 2018).

Trawling has been shown to alter surface sediment properties;
for example, either increasing particle sizes through the
winnowing of smaller fractions (Watling et al., 2001; Brown et al.,
2005; Palanques et al., 2014) or decreasing them by the removal
or breakup of larger particles (Bradshaw et al., 2002). Organic
carbon content in surface sediments may be higher (Pusceddu
et al., 2005; Palanques et al., 2014) or lower (Martín et al., 2014)
in trawled sediments, and the type of organic matter may also
be affected (Watling et al., 2001; Pusceddu et al., 2005). The
overall effect on sediment properties depends on the original
sediment type but also on trawling frequency, local current
regimes and whether trawling causes a net removal/erosion of

surface sediments or mixing of surface and deeper layers (Martín
et al., 2014; Oberle et al., 2016b, 2018).

The few existing studies of biogeochemical effects of trawling
have produced contradictory results. A number of authors
report no measureable effects on nutrient fluxes (Smith et al.,
2000; Zacharia et al., 2006; Olsgard et al., 2008), while
others have shown short term effluxes of some nutrients
from sediments (Krost, 1990; Durrieu de Madron et al., 2005;
Dounas, 2006; Dounas et al., 2007), confirmed by sediment
suspension experiments (Krost et al., 1990; Percival et al.,
2005) and models (Blackburn, 1997; Duplisea et al., 2001).
Increased carbon mineralization rates have also been seen
(van de Velde et al., 2018). Effects are likely dependent on
the depth of the redox potential discontinuity relative to the
depth of disturbance (Warnken et al., 2003), altered redox
pathways (van de Velde et al., 2018), the types of organisms
present in the sediment (Olsgard et al., 2008), and the timescale
over which measurements are made. Dounas et al. (2007)
calculated that releases of nutrients could support 15% of
productivity in the oligotrophic Bay of Heraklion. However,
other authors suggest that short term pulse releases of nutrients
from trawling do not increase the overall long-term nutrient
concentrations or availability (Sloth et al., 1996; Blackburn,
1997; Trimmer et al., 2005). Two recent studies suggest that
bottom trawling could impact regional and even global carbon
storage capacity of marine sediments (Legge et al., 2020;
Sala et al., 2021).

The Baltic Sea is one of the largest brackish water bodies in the
world and is subject to a range of anthropogenic stressors. Many
species and habitats are in poor condition (HELCOM, 2018),
and the most important anthropogenic pressures are identified
as nutrient and organic enrichment, selective extraction of
species, contaminants, non-indigenous species and abrasion and
substrate loss, the latter partly caused by bottom trawling (ICES,
2020a). Bottom trawling mainly occurs in the southern Baltic
Proper using otter trawls, and the target species are cod (Gadus
morhua) and the European flounder (Platichthys flesus) (ICES,
2018). Although fishing intensity has been relatively low during
the last few years due to the poor status of Baltic cod stocks,
fishing intensity was high from the 1970s to early 2000s (ICES,
2018, 2020b,c). However, very few studies in the Baltic Sea have
attempted to evaluate bottom trawling impacts. An early study
in the Kiel Bight (Krost, 1990; Krost et al., 1990) described
how otter trawling caused physical disturbance of the seafloor,
changes to benthic communities and, using experiments and
calculations, hypothesized that dissolved nutrients might be
released when these sediments were suspended. More recently,
van Denderen et al. (2020) estimated that a combination
of trawling disturbance and hypoxia reduced the benthic
community biomass by at least 50% in 14% of the Baltic Sea.
Bunke et al. (2019) saw evidence of extensive disruption of
sedimentary fabrics by trawling in the south-west Baltic Sea,
although bioturbation, storms and marine water inflows also
contributed to the disruption. Given that many areas of the Baltic
Proper comprise soft sediment seabeds, physical disturbance by
trawling can be expected to cause sediment suspension and affect
biogeochemical processes across the sediment-water interface;
however, data is lacking.
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Given the lack of data on trawling impacts in the Baltic
Sea and the generally poor understanding of how trawling
impacts sediment suspension and biogeochemical processes, we
performed a controlled field experiment using a commercial otter
trawl to quantify the physical and biogeochemical impacts of
bottom trawling on a Baltic Sea seabed. Using acoustic mapping
and water and sediment sampling, we quantified the extent of
physical seabed disturbance, suspension of particulate matter,
and the release and fluxes of dissolved substances from the
sediment over 4 days and up to c. 1.5 km from the trawl track.

MATERIALS AND METHODS

Description of the Study Area and
Overview of the Field Experiment
The study area is located in the north-west Baltic Proper
(Figure 1). The area is quite sheltered from all wind directions

by the mainland and numerous surrounding islands. The seabed
where the trawling was carried out comprises unconsolidated
gyttja clay sediments at 20–35 m depth (Jakobsson et al., 2020;
Supplementary Figure 2). The area is non-tidal and water
currents are generally slow.

A small (12 m × 4 m) commercial trawler with an otter
trawl was used (Figure 2) to create a single trawl track. The two
metal trawl doors, 110 cm high and 160 cm long, weighing c.
230 kg each, were connected by 50 m sweeps to the headline
and groundgear which comprised a row of rubber discs. The
net was 65 m long and kept open vertically by six groups
of three floats attached approximately half way between the
headline and the codend.

The bathymetry of the area was acoustically mapped with
a multibeam echo sounder (EM2040, see below) in May
2018. Immediately prior to the experimental trawling (22
October 2018), and along the planned trawl track, two CTD
(Conductivity, Temperature, Depth) and water sample profiles

FIGURE 1 | Overview map of sampling sites, multibeam bathymetry acquired for this study (rainbow colored depth scale) and sub-bottom profile acquired 4 days
after trawling (yellow line). Generalized current directions for the deeper water (0–15 m.a.b.) are indicated with arrows color-coded for day (see legend). The white
box outlines the area of the trawl tracks shown in Figure 3b. CTD, Conductivity Temperature Depth; MC, Multicore; SBP, sub-bottom profiling; SVP, sound velocity
profile.
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FIGURE 2 | (A) General view of the aft deck of the trawler showing the winched-in net with net floats visible and a trawl door hanging on each side of the boat; (B)
one of the trawl doors (size c. 110 × 160 cm).

were taken, and an Acoustic Doppler Current Profiler (ADCP;
Workhorse Mariner, 600 kHz) transect taken to ascertain
water current speed and direction. The trawl was then set
at 58◦50.8215′ N, 017◦41.8905′ E, towed at a normal fishing
speed of c. 2.5 knots in a SW to NE direction, and hauled at
58◦49.6027′ N, 017◦39.5284′ E (Figure 1), with an open codend.
Stockholm University’s R/V Electra followed behind the fishing
boat, performing acoustic geophysical mapping of the seafloor
and water column along the whole length of the trawl track
with the multibeam echo sounder (Figure 1 and Supplementary
Table 1). A distance of c. 300 m was maintained to ensure that the
acoustic instruments measured just behind the end of the trawl
net. The geophysical mapping methods are described in detail
in section “Geophysical Mapping, Processing, and Analyses” and
Supplementary Section 2.1).

Further CTD casts and water sampling were done 2 h, 20 h,
3 days, and 4 days after trawling (Figure 1 and Supplementary
Table 2) to measure the spread of the trawl-suspended sediment.
Sediment samples were taken using a 4-core multicorer, 1 and
2 days after trawling, within the trawl track and c. 100 m away
from the trawl track (Figure 1 and Supplementary Table 3).
Bottom water current direction and speed were determined
with ADCP along two transects 20 h and 3 days post-trawling
(Supplementary Section 3.1). Four days after trawling, sub-
bottom profiles were acquired with a penetrating echo sounder
along the trawl track to characterize the underlying sediments
(Supplementary Section 2.4).

Geophysical Mapping, Processing, and
Analyses
High-resolution bathymetric and water column data were
acquired using R/V Electra’s hull-mounted Kongsberg EM2040
0.4◦ × 0.7◦, 200–400 kHz, multibeam echo-sounder. Position,
heading and attitude (heave, pitch and roll) data were received
from a Kongsberg-Seatex Seapath 330+ Global Navigation
Satellite System (GNSS), making use of both GPS and GLONASS

satellites and an attached Seatex MRU5+ motion and reference
sensor. The Seapath 330+ capacity of applying real-Time
Kinematic (RTK) positioning was used and corrections were
imported from SWEPOS1. The Seapath 330+ reported maximum
ellipses of Estimated Position Error (EPE) on the order of 2–5 cm
during the surveys. An AML sound velocity probe mounted
near the multibeam transducers gave continuous readings of
surface sound speed. In addition, a Valeport Mini SVP (Sound
Velocity Profiler) was used to acquire sound speed profiles in
the survey area.

Sub-bottom profiles were acquired using the hull-mounted
Kongsberg Topas PS40, 24 channel, parametric sub-bottom
profiler operating with primary and secondary frequencies of
35–45 kHz and 1–10 kHz, respectively. The sub-bottom profiles
shown were acquired using the system in chirp mode with a 1 ms
long 2–10 kHz pulse. This system also received positions from
the Seapath 330+.

The multibeam bathymetry data were cleaned and initially
analyzed using the QPS QIMERA software (Version 2.1.0)2,
where grids were produced representing the seafloor bathymetry
with resolutions of 0.5 × 0.5 m to 0.25 × 0.25 m. Multibeam
backscatter was processed using QPS FMGT (Version 7.9.2) and
the acoustic water column information with QPS FM Midwater
(Version 7.9.0). The processed mapping data were subsequently
imported to the Open Source Geographic Information System
QGIS, version 3.10.0 A Coruña3, for further analyses and map
making. The sub-bottom profiles were processed and displayed
using software tools provided by the Geological Survey of
Canada, courtesy of Bob Courtney.

The area was initially mapped with multibeam from 2 to 4 May
2018 (Figure 1), i.e., about 5.5 months before the trawling on 22
October the same year. The bathymetry data from October were
adjusted by 2 cm to account for differences in seafloor bathymetry

1https://swepos.lantmateriet.se/
2https://www.qps.nl/
3http://qgis.osgeo.org

Frontiers in Marine Science | www.frontiersin.org 4 August 2021 | Volume 8 | Article 683331

https://swepos.lantmateriet.se/
https://www.qps.nl/
http://qgis.osgeo.org
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-683331 August 19, 2021 Time: 16:41 # 5

Bradshaw et al. Physical and Biogeochemical Trawling Effects

and/or sea level between the two dates (see Supplementary
Section 2.1 for details). The corrected bathymetric surface
produced after trawling (October) was subtracted from the
surface before the trawling (May) for two 6 m-wide, 900 m-long
corridors along each of the door tracks. This produced a detailed
map, where positive values indicated depressions and negative
values piles of sediment on the seabed. The volume of the furrows
and piles produced by the trawling was also calculated from these
corridors. Ten 20 m-long boxes along the track were identified
as having the highest quality data and, of these, Boxes 2 and 7
were selected for detailed analyses of the dimensions of the trawl
track features, since the small-scale topography in these two areas
was most distinct, with between-survey differences close to 0 m
outside the trawl marks.

The trawl track was re-mapped with multibeam on April
7, 2020, to investigate if the tracks still were visible in the
seafloor or if they had been degraded by bottom processes, i.e.,
sedimentation, erosion, or bioturbation. This was followed by
visual inspections by divers, as described below.

Visual Inspection of the Trawl Tracks
Four days after trawling (26 October 2018), a 25 m-long part of
the track was inspected using a camera mounted on a BlueROV2
Remotely Operated Vehicle (ROV) equipped with an underwater
positioning system linked to GPS (Figure 1). A second inspection
was done on 7 April 2020 by divers in the same place as the 2019
ROV survey (Figure 1).

CTD and Water Sampling
CTD casts were taken using a Seabird 911+ (Seabird Scientific)
down to 0.5 m above the bottom (m.a.b.), continuously
measuring depth, salinity, temperature, and turbidity (post-
processing binned the data to every 0.25 m). A Rosette sampler
fitted with twelve 5 L Niskin bottles was used to take water
samples at various distances above the seabed, with a focus on
the bottom water (0.5–10 m.a.b.).

At each water depth, water for dissolved methane analysis was
immediately collected directly through silicone tubes from the
CTD rosette bottles into 100 mL serum bottles and allowed to
overflow twice. One hundred microliters of a 50% zinc chloride
(ZnCl2) solution was added to stop all biological activity and the
bottles immediately sealed with butyl rubber septa and crimped,
ensuring no air bubbles were trapped.

The rest of the water sample was mixed well and different
subsamples taken. A known volume (c. 1 L) of water was
filtered on a pre-weighed and pre-burnt 47 mm GF/F filter
for quantification of suspended particulate matter (SPM) and
particulate organic matter (POM). A further two samples were
filtered in the same way for analysis of; (1) particulate carbon and
nitrogen; and (2) particulate phosphorus. In between samples,
funnels and filters were rinsed with 50 mL MilliQ water to
remove any salt. All filters were frozen immediately at −20◦C
in foil. Duplicate 10 mL water samples were filtered through
a disposable 0.47 µm filter into 2 vials for dissolved nutrient
analysis [(NO3

−
+ NO2

−)-N, NH4
+-N, PO4

3−-P, hereafter
referred to as NOx, NH4, and PO4] and frozen immediately at
−20◦C. Twelve millilitres of water was filtered through a 0.2 µm

disposable filter into a vial for dissolved element analysis (Al, Fe,
Mn, P, Ti) and 100 mL water was saved unfiltered in a factory
clean plastic bottle for total element analysis. The vials and bottles
were pre-filled with a volume of concentrated suprapure HNO3
equivalent to 1% of the sample volume. Both were kept cool (8◦C)
and dark. MilliQ blanks were taken for all these analyses.

Sediment Sampling and Processing and
Sediment Flux Measurements
A multicorer (K.U.M. Umwelt und Meerestechnik Kiel), fitted
with four acrylic core tubes [inner diameter (i.d.) 9 cm, height
60 cm] was used to take sediment cores. A total of 11 cores
were taken 24 h after trawling at different locations within and
outside the trawl track (Figure 1 and Supplementary Table 3),
and sampled for a range of measurements (see below). Four
further cores from the trawl door track and four from 100 m
outside the trawl track (Figure 1 and Supplementary Table 3)
were taken 2 days after trawling for O2 microprofiling and for
nutrient flux incubations. In these eight cores, the overlying water
was removed and collected in one container per station for later
use in the incubations. Each core was subsampled using a smaller
Plexiglas core tube (i.d. 4.6 cm, length 30 cm). These minicores
were capped top and bottom with rubber stoppers, ensuring no
air bubbles in the overlying water, and immediately placed in a
dark cool box for transport to the laboratory within a few hours
of collection.

Porewater samples were extracted from three cores at 1–5 cm
intervals (closer intervals near the sediment surface) with
rhizons (Rhizosphere Research Products) (Seeberg-Elverfeldt
et al., 2005). The rhizons had been pre-treated for 2 h in 2 M
HCl, followed by two rinses with deionized water for 2 h and final
storage in deionized water. The overlying water was drained and
rhizons were connected to 10 mL disposable plastic syringes via
3-way luerlock stopcocks and inserted through tight-fitting, pre-
drilled holes in the sediment tubes. The first mL of pore water
was discarded from the syringe. Then two samples of c. 1 mL
porewater were collected in separate Eppendorf tubes for analysis
of dissolved elements and dissolved nutrients. No more than 2 mL
were collected from each core to prevent cross-contamination of
adjacent intervals (Seeberg-Elverfeldt et al., 2005) and samples
were stored frozen.

Three cores were used for measurements of porewater
dissolved methane. A sediment sample of 2.5 mL was taken with
a 3 mL cut-off syringe through the side of taped, pre-drilled core
tubes at 2 cm intervals. The sample was directly transferred to a
20 mL serum vial containing 5 mL 5 M NaCl, immediately closed
with a thick septum and an aluminum crimp seal and shaken
thoroughly to produce a slurry (Sawicka and Brüchert, 2017).

Four cores were sliced at 1 cm intervals down to 8 cm and
thereafter 1 cm slices taken at 9–10 cm, 14–15 cm, 19–20 cm,
and 24–25 cm deep. Each slice was frozen in a separate
ziplock bag for analysis of sediment porosity, organic carbon
content and grain size.

Sediment microprofiling for O2 concentrations was conducted
in two 4.6 cm i.d. cores using a Clark-type microelectrode
(OX-50, Unisense), one core from the trawl track and one from
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outside the track. Three replicate microprofiles were carried out
in each core. The microelectrode tip (50 µm) was inserted directly
inside each sediment core, while an air stone was bubbling air
to ensure sufficient water mixing during the measurements. The
sensor was calibrated using a two-point calibration procedure
in O2 saturated bottom water and inside the sediment (zero
reading). Oxygen penetration depth (OPD) was defined as the
depth where O2 concentration was consistently <1 µmol L−1.

The eight 4.6 cm i.d. cores were used for a nutrient flux
incubation experiment. All cores were fitted with individual
magnetic stirrers in the overlying water and placed un-
capped in a temperature-controlled incubator at in situ
temperature (6◦C) in the dark. The overlying water was
carefully replaced with in situ bottom water, avoiding sediment
resuspension, so that all cores were exposed to the same
overlying water. After an 8 h stabilization period, a 15 h
incubation was performed to estimate nutrient and oxygen
fluxes across the sediment-water interface. Dissolved oxygen
measurements and water samples for nutrients were taken
immediately prior to capping the cores for the incubation
and immediately after the stoppers were removed. Oxygen
was measured directly using a microelectrode (OX-500,
Unisense), calibrated with 0 and 100% O2-saturated in situ
bottom water (bubbled with N2 or air, respectively). Water
samples for nutrients were filtered on a GF/F filter and frozen
prior to analysis of NOx, NH4 and PO4. Net solute fluxes
were calculated from the difference between final and initial
concentrations according to Bonaglia et al. (2013). Positive
values represent effluxes while negative values represent
sediment uptake.

Sample Analysis
Water and Porewater Sample Analyses
Filters for SPM were dried at 60◦C and reweighed to obtain the
dry weight (DW) of SPM per filter. They were then burnt at
500◦C and reweighed to obtain the mass of particulate organic
matter (POM) per filter by loss on ignition. SPM and POM were
standardized to mgDW L−1, based on the water volume filtered.

Particulate C and N on filters were determined with a Thermo
Scientific Flash 2000 elemental analyzer after combustion at
950◦C and particulate P with a segmented flow autoanalyzer
system (ALPKEM, Flow Solution IV) after combustion at 500◦C
and persulfate digestion. Precision was 8, 15, and 7% for C, N,
and P, respectively.

Porewater nutrients were analyzed spectrophotometrically
following appropriate dilution with artificial seawater of 6h
salinity. Dissolved nitrate was analyzed according to Schnetger
and Lehners (2014), dissolved inorganic phosphate following
Koroleff (1983), and dissolved ammonium following Bower and
Holm-Hansen (1980). The analytical precision, based on replicate
analyses, was 5%.

Dissolved concentrations of (NO2
−
+ NO3

−)-N, NH4
+-

N and PO4
3−-P in bottom water were determined on a

segmented flow autoanalyzer system (ALPKEM, Flow Solution
IV). Precision was ±4% for NOx, approximately ±5% for NH4,
depending on concentration, and±7% for PO4.

Element analyses of filtered and non-filtered water samples
(i.e., dissolved and total concentrations) and porewater samples
were done with an ICP-OES, Thermo ICAP Duo 6500.
Samples were mostly run undiluted but pore water samples
were sometimes diluted before analysis because of small
sample volumes (dilution 1:5). Samples were thereafter run
in both axial and radial mode having a small concentric glass
spray chamber and a seaspray nebulizer using an integration
time of 30 s to get high sensitivity. The seaspray nebulizer
has high tolerance to particulates, typically up to 75 µm.
Results from analyses were within ±5% when comparing
with a certified standard, NIST 1640a. Particulate element
concentrations were calculated as the difference between
total concentration (non-filtered) and dissolved (filtered)
concentration for each sample.

For analysis of dissolved methane in water samples, 10 mL
of the water was replaced by helium gas at ambient pressure.
The bottles were placed horizontally on a shaker table and
equilibrated while shaking overnight at room temperature. For
analysis, 3 mL of the headspace were replaced with an equivalent
amount of a 6h NaCl solution maintaining the solubility of
methane. The gas sample was injected on a Shimadzu GC-8A
with flame ionization detector. The instrument was calibrated
with synthetic gas standards from Air Liquide (11.414 ppmv and
5.003 ppmv CH4). The dissolved methane concentration in the
water sample was calculated following Bange et al. (2010) from
the sum of the methane mole fraction in the headspace and the
mole fraction of dissolved methane.

To analyze porewater methane, each sediment sample was
shaken and 5 mL of a saturated NaCl brine solution was
injected into the sample vial to displace 5 mL gas into the
sampling syringe. The CH4 measurements were carried out
on a SRI gas chromatograph (GC) with a flame ionization
detector (FID) (SRI 8610C) with N2 as carrier gas. CH4 standards
of 100, 1,000, and 10,000 ppm (Air Liquide) were used for
calibration. The concentration of methane (mmol L−1) in a
sediment sample was calculated according to Equation 2 in
Supplementary Section 3.3.1.

Sediment
The wet weight, dry weight and ash-free dry weight of 5 mL
of each wet sediment sample (depth layer) were determined by
drying at 60◦C for at least 24 h and then combusting at 500◦C
for 4 h. Porosity was calculated as the volume proportion of
porewater in 5 mL wet sediment (wet sediment weight minus
dry sediment weight, water density assumed to be 1 g mL−1).
Organic matter content was calculated as the difference between
ash-free dry weight and dry weight, expressed as % of dry
weight. Sediment bulk density (gDW mL−1) was calculated as
(1–porosity)× 2.65, where 2.65 is the assumed sediment density.
Sediment grain size analysis was performed on wet untreated
sediment with a Malvern Mastersizer.

Chlorophyll was extracted from each wet sediment slice by
taking triplicate subsamples of 1 cm3 using a cut-off syringe,
adding 9 mL of 95% ethanol to each and leaving the samples
overnight in the fridge. After centrifugation (4,000 rpm for
5 min), chlorophyll in the supernatant was measured at 663 and
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750 nm using a Shimadzu spectrophotometer and chlorophyll
concentration calculated according to HELCOM (1988).

Calculations and Statistics
All statistics [analysis of variance (ANOVA), principle
component analysis (PCA), multiple correlations] and
contour plots were done with Statistica v. 13.3. Further
details of the calculations are presented in the Supplementary
Sections 2.2, 2.3, 3.2.1, 3.3.1, but a brief summary is given here.

Area, Volume, and Mass of Disturbed Sediment on
the Seabed
Spatial dimensions of the trawl disturbance, depth of penetration
of the trawl doors and sediment volumes displaced were
estimated from analysis of multibeam data (see Supplementary
Sections 2.1 and 2.2) and, together with site data on sediment
porosity, used to calculate total volumes and masses of
sediment disturbed by the fishing gear. Details are provided in
Supplementary Section 2.3, but a summary is given here.

Volumes of sediment excavated by the trawl doors (=furrows)
and deposited as sediment piles at the sides of these furrows,
expressed per m of single furrow, as well as average door
penetration depth (9 cm) were obtained from the multibeam
data analysis (see Figure 3 and section “Physical Impact of
Trawling on the Seabed”). Disturbance between the trawl doors
was assumed to be caused by both groundgear and sweeps
(as in Eigaard et al., 2016). Volumes of sediment disturbed by
the groundgear and sweeps were calculated from the distance
between the trawl door tracks (obtained from the multibeam
data) and a depth of disturbance of 2 cm, since groundgear
tracks were clearly visible in ROV images (Figure 4) but rarely
seen with the multibeam which has a vertical resolution of c.
2 cm (see section “Physical Impact of Trawling on the Seabed”
and Supplementary Section 2.3). Depth of disturbance of the
sweeps was also taken as 2 cm (consistent with the groundgear
and Eigaard et al., 2016). Sediment volumes were expressed per
m or m2 of the whole trawl track, based on track dimensions
of 1.4 m for each trawl door furrow and 33.4 m between these
furrows, obtained from multibeam data. Sediment volumes were
also converted to kg dry weight (kgDW) per m or m2, using
a sediment density of 0.44 or 0.52 gDW mL−1 (=average of
top 2 or 9 cm from four sediment cores taken in the area).
The relative contribution of the trawl doors and groundgear was
also estimated, based on the proportion of the sediment area or
volume disturbed by these two components.

Suspended Sediment and Particulate Substances
The total amount of sediment suspended per m of trawl
track was calculated from the CTD turbidity data (in NTU;
Nephelometric Turbidity Unit), converted to mgDW L−1 using
the relationship obtained from filtered water samples [SPM
(mgDW L −1) = 1.42 × NTU + 0.78; R2 = 0.82]. Calculations
were based on a 1 m-wide swathe across the trawl track and the
corresponding 1 m-wide “downstream” water volume, divided
horizontally and vertically into compartments according to the
depth and position of 2 h post-trawling measurements. Thus,
data from 0.5, 2.5, 5, 7.5, and 10 m.a.b., and 0, 100, 250, and

550 m from the trawl track were used, i.e., the water volume that
was known to include the suspended sediment plume. The mass
of SPM in each compartment was calculated and background
turbidity, obtained from the average of the two CTD casts 3 h
prior to trawling, was subtracted for each water depth.

The resulting masses were summed to obtain the total excess
mass of sediment in the downstream sediment plume. The total
amounts of particulate elements (C, N, P, Al, Fe, Mn, Ti) in the
sediment plume were also estimated by multiplying the mass
of SPM in each water compartment by the ratios of element to
SPM concentrations measured in the same water samples 2 h
after trawling. Al and Ti were selected as unreactive inorganic
particle tracers, Fe and Mn as redox sensitive reactive elements,
N and P as nutrients and C as a tracer of organic matter. Results
were expressed as kgDW m−1 or kgDW m−2 trawl track and
the relative contributions of the trawl doors and groundgear
to this suspension was also estimated, based on the relative
proportions of these components to the seabed disturbance
(see section “Area, Volume, and Mass of Disturbed Sediment
on the Seabed”).

Dissolved Substances (Al, Fe, Mn, Ti, Dissolved
Nutrients, Methane)
Since elevated concentrations of several dissolved substances
were seen in the bottom water after trawling, most likely
from mixing of sediment porewater into the water column, we
calculated the potential amount of dissolved substances that
could be released from the disturbed sediment in the trawl track.
A depth of sediment disturbance of 9 cm in the door tracks
and 2 cm in the groundgear tracks was used (see section “Area,
Volume, and Mass of Disturbed Sediment on the Seabed”). The
average porewater concentrations of Al, Fe, Mn, Ti, NH4, NOx,
PO4, and CH4) in the top 2 or 9 cm of sediment was determined
from three sediment cores and the total amount (mg) of each
present in a 1 m wide swathe across the entire trawl track
calculated, taking into account the relative proportions of the
groundgear and door tracks and assuming a sediment porosity of
0.84 or 0.80 (average of upper 2 or 9 cm from four other sediment
cores). Overlying water concentrations were then calculated as
the sum of background concentrations (average of two pre-
trawl sample profiles) and the released porewater, assuming the
entire porewater inventory was released into the bottom 0.5 m of
water immediately over the trawl track. The potential porewater
contribution to this bottom water was expressed as a % of the
total concentration.

We also calculated to what degree porewater mobilized from
sediment could contribute to measured dissolved concentrations
in the bottom water 2 h after trawling. Calculations were
performed assuming that the porewater inventory was diluted
into an adjacent bottom water volume 5 m deep and up to
550 m away from the track (i.e., the transect for which we had
actual measurements). The calculated porewater addition was
compared to average concentrations measured at three stations
2 h post-trawling, up to 5 m.a.b. and 550 m away, and again
expressed as % of that water concentration. For methane, data
from 20 h post-trawling were used. Lastly, ratios of measured
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post-trawl: pre-trawl water concentrations were calculated for
different distances from the track and heights above the seabed.

Relationships Between Components of the Sediment
Plume Over Space and Time
To explore the relationships and potential correlations between
the different elements in the water column and whether, or
how, their spatial distribution could be related to the suspended
sediment plume (SPM, or the inorganic or organic fraction
of SPM), two PCAs were performed; one for particulate
substances and one for dissolved substances (see Supplementary
Sections 3.2.2 and 3.3.2). SPM, organic matter concentration,
inorganic matter concentration, time, distance from trawl
track and meters above bottom (m.a.b.) were included as
supplementary variables and superimposed on the PCA plots.
The supplementary variables’ relationships with the element and
nutrient concentrations were determined using separate multiple
correlation analyses.

Comparison of Sediment Fluxes
Differences in each sediment flux (NH4, NOx, PO4, O2) between
trawled samples and untrawled samples were compared using a
one-way ANOVA. Normality of the data was assessed visually
using normal probability plots of the residuals and homogeneity
of variance tested with the Cochran’s C test. Since Cochran’s
test was not significant in all cases and there were no major
deviations from normality, the ANOVAs were performed on
untransformed data.

RESULTS

Physical Impact of Trawling on the
Seabed
The tracks created by the trawl doors comprised two regular
rows of pits with sediment piles on the sides, rather than smooth
consistent furrows (Figure 3). The piles of displaced sediment
were particularly pronounced on the inner side of the furrow
(Figures 3, 4C).

Using the areas with best quality multibeam data (Boxes 2 and
7, Figure 3b), the mean width of the furrows was 1.6 m and
ranged from 6 to 12 cm deep. In the entire analyzed corridor
shown in Figure 3b, the maximum furrow depth was 16 cm. The
sediment piles on the inner sides of the trawl doors were higher
than on the outer side of the track and were 1.4–1.9 m wide and
up to 8 cm high in the whole corridor. These values should be
seen as minimum measures of the average maximum dimensions
as the measurements are made between the−2 cm contours.

In the area between the two trawl door tracks, shallow parallel
depressions were seen in ROV images (Figure 4B). These were
produced by the rollers on the groundgear moving over the
seabed and had a depth of c. 2 cm, since they were only
occasionally visible in the multibeam data which has a vertical
resolution in the order of ±0.1% of the water depth, i.e., ±2 cm
in 20 m water depth.

The furrows of the trawl door tracks were estimated from
multibeam bathymetry to occupy volumes of 0.24–0.34 m3 m−1

of track while the sediment piles range between 0.14 and 0.24 m3

m−1 (Table 1). The relative contributions of the groundgear and
trawl doors to the sediment disturbance were estimated; per m2

disturbed, the doors have a larger impact (by a factor of c. 5–6).
However, the total volume or mass disturbed for every m the
trawl is dragged is potentially greater (factor of c. 2–3) for the
groundgear, since the area affected comprises a relatively large
proportion of the total track (92% of the total area and 70% of
the total disturbed volume) (Supplementary Section 2.3). A total
of about 1 m3 or 12 kg sediment was therefore disturbed per m
of seabed trawled.

The trawl tracks may also be visible with sub-bottom profiling,
since the locations of the trawl tracks in sub-bottom profile SBP
805 coincide with acoustically transparent spots (Supplementary
Figure 2), which commonly appear where layered sediments are
disturbed. Although several other similar spots are visible along
the profile, it seems more than coincidental that these exactly
match the trawl track locations. The vertical resolution of the sub-
bottom profiles is on the order of 10–20 cm, so it is not impossible
that the tracks, with their vertical topography of c. 20 cm, might
be visible in this way.

The re-survey of the trawl tracks in April 2020, i.e., 18 months
after they were formed, showed that the tracks were still
preserved in the seafloor and clearly visible in multibeam images
(Supplementary Figure 4). However, the backscatter signal was
much fainter, and divers could not see the tracks.

Spatial and Temporal Patterns in
Particulate Substances in the Water
Column
During the week of the field experiment, the water column did
not show strong stratification, but there were two water masses:
an overlying stable layer (c. 7.5◦C, salinity c. 7 psu) down to about
10–20 m water depth; and an underlying layer where temperature
and salinity decreased steadily to c. 5.5◦C and c. 7.3 psu at 0.5 m
above the seafloor. There was a tendency for the surface layer
to extend slightly deeper further to the SE. The depth of the
overlying layer also increased during the week from c. 10 m to
c. 20 m, particularly between 1 and 3 days after trawling.

Bottom water currents and speeds were spatially and
temporally variable during the week. Current speeds were
generally slow (<6 cm s−1) and, in the area from the trawl
track to where the suspended sediment was measured, the
general direction of flow was between SW and SE, depending
on the exact position, water depth and date (Figure 1 and
Supplementary Figure 7).

Particulate Substances in the Bottom Water
Multibeam acoustic imagery of the water column clearly showed
sediment suspension during trawling (Figure 5), both by the
trawl doors and from the groundgear. Two hours after trawling,
the turbid plume was detected over the trawl track and 250–
550 m SE of the track (Figure 6A). Given that bottom current
speeds were a maximum of c. 6 cm s−1 during this period
(Supplementary Figure 7), this agrees well with theoretical
maximum transport of about 430 m. Maximum turbidity was
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FIGURE 3 | Detailed maps showing the tracks from the trawl doors visible in the multibeam bathymetry. (a) Shaded relief of the multibeam bathymetry showing
where the two trawl doors landed on the seafloor and after about 50 m begun to establish a regular trawl path. DS is the distance between measurements made to
establish the distance between the two trawl doors. The first measurement was made 50 m after the doors began to establish a regular path (DS = 50). Thereafter,
measurements were made every 100 m (Supplementary Table 4). The anchor drag mark was 5.5 months old at the time this image was taken. (b) The depth
difference between the multibeam surveys before and after trawling, along two c. 6 m wide corridors around the trawl tracks (North and South corridors in text). The
ten 10 × 20 m boxes were used for quantification of sediment displacement (see Supplementary Section 2.2). (c) Detail showing Box 2. Contours with an interval
of 0.02 m are shown, with the 0 and 0.02 m contours labeled. The legs of the L shaped scale are 2 m long. In (b,c) blue shading indicates furrows (positive values
compared to surrounding seabed) and orange displaced sediment piles (negative values).

4.1 NTU at 0.5 m.a.b. (cf. 3.0 NTU pre-trawling) and 2.9 NTU
at 7.5 m.a.b. (cf. 1.1 NTU pre-trawling), i.e., an increase of up
to 1.8 NTU (Supplementary Table 6). The following day (20 h
post-trawling), the plume was detected at least 500 m away from
the track, following the general current direction, but had not
decreased in turbidity (Figure 6B). Since the highest turbidity
at +20 h (4.3 NTU) was measured at 550 m from the track,
we can conclude that we did not capture the entire plume with

our sampling. Three days after trawling, the remnants of the
plume were detectable 1.1 km away, although turbidity was lower
at that distance (maximum of c. 2.5 NTU) and the sediment
appeared to have settled out to form a thinner turbid bottom
layer (Figure 6C). Again, given the current speeds in the area,
this transport distance is entirely feasible. Turbidity was still high
(>4 NTU at 0.5–1 m.a.b.) over the trawl track. Elevated turbidity
was also detected several hundred meters NW of the track after
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FIGURE 4 | ROV images showing (A) undisturbed sediment, (B) shallow parallel tracks formed by the rubber discs on the groundgear, (C) piles of sediment
displaced by the trawl doors. See Figure 1 for location.

20 h and 3 days (Figures 6B,C), probably due to variable bottom
currents during the period of study (Figure 1 and Supplementary
Figure 7). Using the site-specific NTU to SPM conversion, the
maximum concentration of suspended matter was 6.9 mgDW
L−1, measured 20 h after trawling, 550 m from the trawl track.

Concentrations of particulate Al, Fe, Mn, and Ti strongly
co-varied with each other and with concentrations of SPM
and inorganic matter, reflecting the overall trends in turbidity
(Supplementary Figure 9 and Supplementary Table 7).
Particulate P, and to a lesser extent N, also co-varied with this
group of elements. Concentrations of all elements except Ti,
as well as SPM and inorganic matter, were weakly negatively
correlated (coefficients−0.11 to−0.43) with time since trawling,
and all except C were negatively correlated (−0.30 to −0.49)
with height above the seabed. There were no clear relationships
with distance from the trawl track (see Supplementary Table 7),
probably because this relationship is not linear as the plume likely
moves as a water body that slowly disintegrates and diminishes.

Total Amount of Suspended Sediment and
Particulate Matter
The total amount of sediment suspended was estimated as 9.5 kg
per m of trawl track (i.e., a 1 m swathe across the entire 36.2 m
width of the track) or 0.26 kg m−2. The relative contributions of

TABLE 1 | Summary of estimated sediment volumes and masses disturbed and
displaced during trawling, based on multibeam measurements.

m3 m−1 of
track

kgDW m−1

of track
m3 m−2 kgDW m−2

Sediment
excavated by doors
(furrows)

0.24–0.34 125–177 0.09–0.12a 44.5–63.1a

Sediment displaced
by doors into
sediment piles

0.14–0.24 73–125 0.05–0.09a 26.0–44.5a

Sediment disturbed
by groundgear

0.67 291 0.02b 8.7b

Sediment disturbed
by groundgear plus
doors c

0.91–1.01 472–524 0.025–
0.028d

11.5–12.9d

Ranges are from using the two average values from the North and South corridors.
aValues are per m2 of furrow.
bValues are per m2 of central area of the track (i.e., disturbed by groundgear).
cSum of groundgear and furrows.
dValues are per m2 whole trawl track (furrows plus central area).

the trawl doors and groundgear were estimated as 2.9 and 6.6 kg
m−1, respectively (Table 2). However, per m2, suspension was
more than five times higher from the door furrows than from
the groundgear (1030 and 199 g m−2, respectively; Table 2). The
same was seen for particulate C, N, P, Fe, Mn, and Al (Table 2).

Effects on Physical and Biogeochemical
Sediment Properties
Sediment profiles of porosity, organic carbon content, mean
particle size and chlorophyll all suggested physical disturbance of
the surface 3–5 cm in the trawl track (Supplementary Figure 5).
Profiles of dissolved substances (e.g., Fe, Mn, nutrients, and
dissolved methane) in the porewater also indicated disruption
of the biogeochemistry of the surface sediment (Supplementary
Figure 6). For several substances (e.g., chlorophyll, methane,
porosity), these profiles confirm the removal or displacement
of the surface sediment, and thus the apparent upward shift of
these profiles compared to undisturbed sediment. The lack of a
consistent type of disturbance across all cores is probably due to
their exact positions relative to different features of the track.

Effects on Dissolved Substances in the
Bottom Water
Spatial and Temporal Trends in Concentrations of
Dissolved Substances
Two hours after trawling there was an increase in dissolved
nutrients (NH4, NOx, PO4, total N) and Mn, up to 550 m
away from the trawl track and up to c. 5 m.a.b.; Figure 7
and Supplementary Table 9). All the dissolved nutrients,
together with Mn, strongly co-varied (Supplementary
Figure 10) and positively correlated with SPM, inorganic
particulate matter and, to a lesser degree, POM (coefficients
mostly >0.7; Supplementary Table 8). They were also negatively
correlated with distance from the trawl track (coefficients
c. 0.75) and with height above the seabed (coefficients c.
0.45–0.5) (Supplementary Table 8). In contrast, dissolved
Al, Fe, and Ti tended to decrease in concentration after
trawling close to the trawl track and in the bottom 0.5–1 m
(Figure 7 and Supplementary Table 9). These elements
covaried (Supplementary Figure 10) but were weakly negatively
correlated with SPM, inorganic matter and POM and weakly
positively correlated with distance and height over the seabed
(Supplementary Table 9). The patterns visible 2 h after trawling
were no longer visible after 20 h.
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FIGURE 5 | 3D-view of acquired multibeam midwater imagery. (a) Stacked curtain of 256 beams that shows sediments being suspended during the trawling. The
bright yellow/orange feature is the trawl net. The fan-view of the stacked beams is shown alone without the along-track curtain in (b) and reveals suspension from
the groundgear.

Two hours after trawling, concentrations of dissolved methane
in the water were c. 40 nmol L−1 up to c. 5 m.a.b. and
several hundred meters SE of the track (Figure 8A). After
20 h, concentrations had increased to nearly 60 nmol L−1

(Figure 8B) and were elevated much further away from the track
and further above the seabed. Concentrations over the track 3–
4 days after trawling were around 20 nmol L−1, which agrees
with other typical measurements of 10–20 nmol L−1 in the area
(unpublished data).

Potential Contribution of Porewater to Bottom Water
We evaluated if porewater release could account for the trends
described above. If the entire porewater inventories from the top
sediment layer in the trawl track were released directly into the
bottom 0.5 m of water above the track, average bottom water
concentrations could comprise up to c. 90% porewater (e.g., for
Fe, NH4), i.e., an increase in concentration by up to a factor of 14,
depending on the substance and the water depth (Table 3A). If
the same porewater inventory was dispersed into the bottom 5 m
of water and up to 550 m downstream (i.e., the volume where
elevated concentrations were measured after 2 h; Figure 7), the
excess element concentrations would represent up to only a few
percent of the dissolved concentrations measured (Table 3B).
Note, however, that these calculations were based on average
concentrations across the area and do not account for the spatial
heterogeneity in concentrations, as seen in Figures 7, 8.

Nutrient and Oxygen Fluxes
Two days after trawling, fluxes of nutrients from and oxygen
to the sediment were lower in trawled sediments compared to
the controls; these differences were significantly different for O2
[F(1, 6) = 8.73, p = 0.025] and NOx [F(1, 6) = 16.12, p = 0.007]
(Figure 9). Microsensor profiling showed that trawled sediments
had significantly higher oxygen penetration depth (5.3± 0.2 mm)
than control sediments (4.3 ± 0.1 mm) [F(1, 4) = 15.25,
p = 0.017] (Figure 10).

DISCUSSION

In this study, we quantified the trawling-induced displacement
and suspension of sediment and the related changes to benthic
biogeochemistry by taking a range of field measurements after
the single passage of a small otter trawl. We demonstrated short
term local releases of dissolved substances (hours, a few hundred
meters) and longer term (days) and larger scale (km) suspension
of particulate matter and substances. Physical disturbance of the
seabed was clear and remained for at least 18 months.

Physical Displacement of Sediment on
the Seafloor
The general appearance and dimensions we describe here, of
deeper paired door tracks, c. 1.2–1.6 m wide and 6–12 cm (max.
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FIGURE 6 | Turbidity (NTU) in the water column at (A) 2 h, (B) 20 h, and (C) 3 days after trawling. The contour plots are based on data (vertical lines of black dots)
from a transect of CTD casts across/away from the trawl track (0 on the x-axis) in a roughly NW (negative values) to SE (positive values) direction. Wafer plots are
based on raw data, i.e., linear interpolation, and no extrapolation beyond the limits of the measured data.

TABLE 2 | Summary of masses of sediment and particulate elements suspended per m or m2 of trawl track. Sediment masses are g dry weight.

Sediment C N P Fe Mn Al Ti

Suspended (g m−1 whole track) 9,523 484 57 16 238 12 155 6

Of which, contribution from trawl doors (g m−1 track) 2,883 147 17 5 72 4 47 2

Of which, contribution from groundgear (g m−1 track) 6,640 338 39 11 166 8 108 4

Suspended (g m−2 whole track) 263 13 2 <1 7 <1 4 <1

Suspended (g m−2 door furrow) 1,030 52 6 2 26 1.3 17 <1

Suspended [g m−2 central area (groundgear)] 199 10 1.2 <1 5 <1 3.2 <1

16 cm) deep, to either side of less distinct parallel tracks caused by
groundgear, are typical for otter trawl tracks on muddy seabeds
(Krost et al., 1990; Tuck et al., 1998; Humborstad et al., 2004;
Smith et al., 2007; Palanques et al., 2014). We clearly saw lateral
displacement of sediment, particularly on the inside of the door
furrow, as described by Gilkinson et al. (1998) and Ivanović et al.
(2011). The broken pattern of the door track is also consistent
with the “jumping otterboard” tracks described by Krost et al.
(1990) and the “herring bone patterns” in Smith et al. (2007).

Many of these studies used side scan sonar and video, the former
allowing larger features to be seen over wide areas and the latter
providing more detailed images of small-scale features. By using
multibeam sonar we were able to combine these two aspects
and provide track bathymetry data at a high horizontal and
vertical resolution over >1 km of track. Only a few other studies
have used multibeam sonar for assessing the physical impacts of
bottom fishing gear; Malik and Mayer (2007) for scallop dredge
tracks on coarse seabeds in the Gulf of Maine, and Depestele
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FIGURE 7 | Concentrations of dissolved substances in the bottom water (<7 m.a.b.) at 2 h after trawling, on a transect up to 550 m away from the trawl track (“0”
on the x axis). Top panel: examples of increased concentrations near the trawl track and near the seabed: (A) total N (sum of NH4-N, NO2 + NO3-N); (B) Mn.
Bottom panel: examples of decreased concentrations near the trawl track and near the seabed: (C) Ti; (D) Al. Concentrations are in µg L−1. Vertical lines of black
dots show data points on which the wafer plots are based. The plots are based on raw data, i.e., linear interpolation, and no extrapolation beyond the limits of the
measured data.

et al. (2016, 2018), Bruns et al. (2020), and Lüdmann et al.
(2021) for beam trawls and otter trawls on soft seabeds in the
North Sea. These studies have used multibeam data mainly to
quantify the number of tracks in a given area and to estimate
track dimensions, and sometimes depth penetration. In addition,
we also used the multibeam data to quantify the total amount
of sediment excavated and displaced; c. 1 m3 or 500 kg per
m of trawl track.

In our study, the trawl track was clearly visible in multibeam
bathymetry images 18 months later (Supplementary Figure 4).
However, divers were unable to see any clear features, suggesting
that the track may have been smoothed out and/or filled in
by currents, sedimentation or bioturbation during this time. It
appears, however, that the tracks just below the sediment surface
are still well-preserved and detected by the multibeam since
the acoustic signal penetrates the uppermost centimeters of the
seafloor. These trawl-induced changes to surface seabed physical
properties have the potential to affect the distribution and
survival of benthic organisms that require particular sediment
properties (e.g., water or organic carbon content) as well
as altering biogeochemical gradients in the sediments. The
persistence of the track is in agreement with other authors
who have seen that, especially in areas with low background
disturbance and on muddy seabeds, tracks may persist from
months to years (Krost et al., 1990; Schwinghamer et al., 1998;

Tuck et al., 1998; Smith et al., 2007; Palanques et al., 2014; Oberle
et al., 2018; Bunke et al., 2019).

Suspension of Particulate Matter and
Extent of the Sediment Plume
After the single passage of the trawl, a turbid plume (up to
6.9 mgDW L−1) was detected in the water column for several
days, up to about 10 m.a.b. and >1 km downstream from the
trawl track. Turbidity values obtained during controlled field
experiments vary widely, not only because of differences in gear
types and towing speeds (O’Neill and Ivanović, 2016) or type
of seabed (O’Neill and Summerbell, 2011; O’Neill and Ivanović,
2016) but also depending on how long after the trawling event,
at what distance from the trawl track and height above the
seabed the measurements were taken. Studies that have looked
at immediate suspension have recorded turbidities of several
hundred mg L−1 close to the gear (e.g., Schoellhamer, 1996;
Durrieu de Madron et al., 2005; Dellapenna et al., 2006; Dounas,
2006; Mengual et al., 2016), though these values decrease with
time to become comparable to those seen in this study.

When sediment suspension has been calculated as a function
of distance or area trawled, values of several hundred g per m2

trawled are commonly reported (Dounas et al., 2005; Durrieu de
Madron et al., 2005; Dellapenna et al., 2006; Bradshaw et al., 2012;
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FIGURE 8 | Dissolved CH4 concentrations (nmol L−1) in the water column
along two transects (A) 2 h and (B) 20 h after trawling. Contour (wafer) plots
are based on data (black dots) from a series of CTD casts across/away from
the trawl track (0 on the x-axis) in a roughly NW (negative) to SE (positive)
direction. Plots are based on raw data, ie. linear interpolation, and no
extrapolation beyond the limits of the measured data.

Mengual et al., 2016), which agrees well with our estimate of
0.25 kg m−2 (across the whole track). O’Neill and Summerbell
(2011) showed that the trawl doors suspended more sediment per
disturbed area (up to nearly 50 kg m−2) than the groundgear
(up to c. 10 kg m−2). This can be compared to our values of
0.96 and 0.19 kg m−2 for the doors and groundgear, respectively.
The difference of an order of magnitude between the studies is
probably due to our calculations being based on water turbidity
2 h after trawling, as opposed to seconds after (only 10–15%
of the plume may remain in suspension after 1 h; Durrieu de

Madron et al., 2005). However, the relative difference between the
suspension caused by gear parts is the same in both studies (factor
of about 5). Since the groundgear has a larger contact area with
the sediment than the doors, it can contribute substantially to the
total suspension across the whole swept width (Dounas, 2006),
something we confirmed in this study (groundgear contributed
about 70% of the total amount suspended).

The initial width of the sediment plume will be the same as
the width of the trawl (i.e., distance between trawl doors) but will
spread outwards and upwards due to hydrodynamic drag, energy
and turbulence generated by the gear and by water currents.
Estimates of the initial height of the plume are c. 3–4 m (a few
minutes after trawling, Mengual et al., 2016), c. 5.5 m (30 min
after trawling, Durrieu de Madron et al., 2005), 10 m (after c.
30 min, Linders et al., 2017), 15–18 m (after c. 10 min, Bradshaw
et al., 2012), all of which are consistent with our results (c. 10–
15 m after 2 h). Bradshaw et al. (2012) also identified a separate
plume from each trawl door that reached higher into the water
column (15–18 m) than the plume in the central area (3–4 m)
that was probably produced by the groundgear.

Trawl-suspended matter comprises a range of particulate
substances such as particulate C, N and P and phaeopigments
(e.g., Dounas et al., 2005, 2007; Durrieu de Madron et al.,
2005). Our study showed the suspension of both mineral grains
(as indicated by particulate Al and Ti) as well as particulate
nutrients (particulate N and P) and elements such as Fe and
Mn in the sediment plume, and the concentrations of these
were strongly correlated and changed with time and distance
from the trawl track as the sediment plume moved. Oxidation
(mineralization) of particulate organic matter can be enhanced if
suspended into the water column, particularly if entrained from
low oxygen sediment layers into oxygenated water (Blackburn,
1997; Wainright and Hopkinson, 1997; Sciberras et al., 2016); this
may partly explain the decrease in O2 in bottom water sometimes
observed after trawling (Riemann and Hoffman, 1991), as well as
changes in bottom water solutes.

Alterations to Biogeochemistry of
Dissolved Substances in the Bottom
Water and Sediments
Our results showed that otter trawling leads to major alterations
of bottom water and sediment geochemical parameters.
Concentrations of particle-reactive dissolved substances (Al, Fe,
and Ti) in the bottom water decreased directly after trawling,
presumably due to their rapid adsorption to the large amount
of suspended matter in the sediment plume. Concentrations
of other substances (NH4, NOx, Mn and to a lesser extent

TABLE 3 | Calculated contribution of porewater release to dissolved substances in the bottom water: (A) potential % of porewater in bottom water above the track,
immediately after trawling (with equivalent factor increase compared to pre-trawling concentrations in brackets); (B) potential % of porewater in bottom 5 m of water, up
to 550 m from track, after 2 h (20 h for CH4).

Meters above seabed (m.a.b.) Al Fe Mn Ti NH4 PO4 NOx Tot-N CH4

(A) 0–0.5 % 77% 87% 76% 22% 93% 35% 17% 61% 72%

(factor) (4.4) (7.7) (4.1) (1.3) (13.9) (1.5) (1.2) (2.6) (3.4)

(B) 0–5 2.1% 4.2% 2.1% 0.2% 4.2% 0.4% 0.1% 0.8% 1.2%

Frontiers in Marine Science | www.frontiersin.org 14 August 2021 | Volume 8 | Article 683331

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-683331 August 19, 2021 Time: 16:41 # 15

Bradshaw et al. Physical and Biogeochemical Trawling Effects

FIGURE 9 | Fluxes of O2 into and nutrients out of the sediment (mean ± SE, n = 4). * Indicates significant difference (p < 0.05) between trawled and untrawled
sediments. Sediment cores were taken 2 days after trawling.

PO4) increased in the bottom water 2 h after trawling, up to a
few hundred meters downstream of the trawl track. Dissolved
methane concentrations were around 3× background 20 h
post-trawling. These changes could be due to: (a) upward mixing
of porewater into the water as sediment is suspended (van de
Velde et al., 2018) or as pore pressures in the sediment are altered
around the moving gear (Gilkinson et al., 1998; Esmaeili and
Ivanović, 2014); (b) desorption of substances from suspended
particulate matter due to altered redox conditions in the plume
(Tiano et al., 2019); (c) increased organic matter mineralization
rates in sediments and/or suspended matter (Tiano et al., 2019)
or; (d) strengthening or weakening of sediment-water diffusive
gradients when sediment is removed from or deposited on
the sediment surface (e.g., Warnken et al., 2003). From our
calculations, we conclude that a direct release of porewater
solutes from the top 2 cm into the overlying water could
produce up to c. 100% immediate increase in bottom water
concentrations. These estimates can be compared with Durrieu
de Madron et al. (2005) who calculated that 1–10 cm sediment
was needed to provide the measured concentrations of dissolved
substances a few hundred meters behind the trawl. A modeling
study by Blackburn (1997) estimated that sedimentary POM
from c. 1 to 2.5 cm sediment must be suspended in order to
make any major contribution to DON, NH4 or NO3 in the
overlying water.

Even if only a few cm (or even mm) are disturbed, this
layer is where most biological activity occurs; thus, even a
shallow impact (e.g., from the groundgear or sweeps) may

have a substantial impact on nutrient dynamics (Fanning
et al., 1982; Dounas et al., 2005; Morys et al., 2021). We did
not detect elevated concentrations of solutes in bottom water
20 h after trawling, but saw decreased fluxes of nutrients and
oxygen in incubated cores taken from the trawl track 2 days
after trawling, indicating that the sediments had not fully re-
equilibrated. This could either be due to depletion of the
pool of dissolved nutrients in the surface sediment and/or the
slowing of biogeochemical processes due to the removal of the
surface sediment, with its labile carbon, porewater solutes and
biologically active components. The removal or disruption of
the upper sediment layer is supported by sediment profiles
of methane, PO4, NH4 and NOx, which were all elevated in
the top 5 cm compared to sediment profiles 100 m from the
track (Supplementary Figure 6). In the undisturbed cores,
these compounds only occur at high concentrations in the
deeper parts of the sediment core. The high concentrations
are due to the diagenetic release during anaerobic organic
matter remineralization by manganese, iron, sulfate reduction
and methanogenesis in the deeper anoxic parts of the sediment
and their higher concentrations in the trawl track porewaters
suggest physical mixing by the trawl or removal of the topmost
sediment layer. Concentration profiles of chlorophyll, organic
matter and porosity (Supplementary Figure 5) also confirm the
removal or displacement of the surface sediment, and thus an
apparent upward shift of these profiles compared to undisturbed
sediment, in agreement with Morys et al. (2021) in a similar
study in the area.

Frontiers in Marine Science | www.frontiersin.org 15 August 2021 | Volume 8 | Article 683331

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-683331 August 19, 2021 Time: 16:41 # 16

Bradshaw et al. Physical and Biogeochemical Trawling Effects

FIGURE 10 | Porewater oxygen microprofiles in sediment cores taken 2 days
after trawling. Circles represent average values of three profiles taken from the
same core and error bars are standard errors.

Changes in benthic O2 microprofiles suggested that 2 days
after trawling the impacted sediment was less reactive (greater
oxygen penetration depth, OPD) than the control sediment.
Similar trends in OPD were observed by Tiano et al. (2019) and
in groundgear tracks by Dellapenna et al. (2006). However, the
opposite trend was seen by Warnken et al. (2003), Dellapenna
et al. (2006), and Ferguson et al. (2020) in trawl door tracks, the
latter study emphasizing the variability in response in different
parts of the track due to the different nature of the physical
disturbance by different parts of the gear.

Changes in dissolved element fluxes due to physical
disturbance are usually short-lived pulses (hours) that disappear
as sediment and water chemistry re-equilibrate (Riemann and
Hoffman, 1991; Blackburn, 1997; Duplisea et al., 2001; Dounas
et al., 2005, 2007; Durrieu de Madron et al., 2005; Percival
et al., 2005; Dounas, 2006), as we also observed in this study.
Thus, the exact time at which measurements are made relative
to the time of disturbance is critical, and effects may vary
temporally and spatially within a single study (e.g., Riemann
and Hoffman, 1991; Zacharia et al., 2006; Ferguson et al., 2020).
Effects also depend on how well-oxygenated the sediments are
and if disturbance disrupts the oxic/anoxic boundary (Duplisea
et al., 2001; Trimmer et al., 2005; Ferguson et al., 2020). In the
Baltic Sea, this boundary is commonly less than 2 cm deep in
oxygenated waters (Bonaglia et al., 2013; Almroth-Rosell et al.,
2015), so the potential for disruption by trawling is high.

Implications of Trawling-Induced
Sediment Disturbance and Suspension
Short term suspension effects will likely cause a transient
impact on biogeochemical processes in the bottom water in
the immediate vicinity of the trawl tracks, but more important

is the spatial and temporal persistence of the sediment plume
in relation to background turbidity. Field studies that have
measured these aspects are difficult to compare as local sediment
type and hydrographical conditions determine the spread and
fate of suspended matter. However, Bradshaw et al. (2012) and
Linders et al. (2017) showed that a plume of fine sediment
was still clearly detectable several days after trawling, just as
we found in this study. Those authors, as well as Schubel
et al. (1979), Churchill (1989), Schoellhamer (1996), Palanques
et al. (2001, 2014), and Mengual et al. (2016) concluded that
trawling likely contributed substantially to overall suspension and
turbidity in the bottom water in the frequently trawled areas
where those studies were performed. The relative contribution
can also be higher during seasons where fishing is most
intensive and natural suspension and sedimentation processes
are low (Churchill, 1989; Palanques et al., 2014; Mengual et al.,
2016). When suspended sediment is transported away from
trawled areas, it can cause large-scale export of sediment to
other areas, for example off-shelf (Churchill, 1989; Palanques
et al., 2001; Ferré et al., 2008; Oberle et al., 2016b, 2018;
Paradis et al., 2018), thus potentially affecting areas that are not
themselves trawled.

While some authors have argued that physical disturbance
simply speeds up a release of sediment solutes that would anyway
have occurred more slowly through diffusion or bioturbation
(Sloth et al., 1996; Blackburn, 1997), others argue that alterations
to sediment stability and structure, sediment redox conditions,
and benthic communities (especially bioturbators) may lead
to chronic longer-term changes in sediment biogeochemistry
(e.g., Duplisea et al., 2001) and sediment-water fluxes. The
frequency of disturbance is probably important; disturbance
at a frequency greater than the timescale needed for re-
equilibration of sediment biogeochemical gradients may result
in these sediments always being in a transient state (Duplisea
et al., 2001; van de Velde et al., 2018). Lastly, trawling may
even have wider-reaching local or regional impacts. Dissolved
effluxes from trawling have been estimated, for example, to
contribute to annual N and Si budgets (Gulf of Maine; Pilskaln
et al., 1998) or productivity (Gulf of Heraklion; Dounas
et al., 2007), or to have chronically affected nutrient dynamics
[North Sea; Percival et al., 2005 (in contrast to findings by
Trimmer et al., 2005)]. Suspension of organic-rich particles is
also known to increase organic matter remineralization and
oxygen consumption (Riemann and Hoffman, 1991; van de
Velde et al., 2018), with implications for the sediments’ carbon
storage capacity (Legge et al., 2020; Sala et al., 2021). In
the Baltic Sea, where commercial bottom trawling frequently
occurs close to areas of low oxygen bottom water (van
Denderen et al., 2020), further decreases in oxygen caused by
trawling also have the potential to exacerbate existing conditions
of oxygen stress.

Conclusion and Perspectives
A single trawling event with an otter trawl on a muddy seafloor
created a distinct trawl track that was still detectable 18 months
later. The trawling event displaced c. 500 t sediment per km
of track, decreasing oxygen penetration depth and nutrient and
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oxygen fluxes across the sediment-water interface in the track
for at least 48 h. Approximately 9.5 t sediment, including tens
to hundreds of kg of associated particulate elements such as Al,
Fe, P, and Mn, were suspended per km of track; the sediment
plume in the near-bottom water was transported more than
1 km away over the following 3–4 days. A short term release
(hours) of dissolved substances (e.g., N, P, Mn, methane) was
also observed in the vicinity of the track, however dissolved
concentrations of particle-reactive elements (e.g., Al, Fe, Ti) near
the seafloor decreased immediately after trawling; we suggest that
this is due to them rapidly adsorbing to the suspended particles
in the sediment cloud.

In order to more fully clarify the mechanisms of the
biogeochemical processes occurring in the days after trawling,
we suggest future experimental field studies take more
detailed measurements of the suspended particulate and
dissolved phases that were not possible in the scope of
this study. Fine resolution measurements of the suspended
particulate matter, dissolved oxygen, pH, alkalinity and
dissolved organic and inorganic carbon in the bottom
water over space and time would contribute to a better
understanding of organic matter mineralization and speciation
of suspended elements. In addition, sediment profiling of
oxygen and dissolved and particulate substances in different
areas of the track (e.g., door furrows and adjacent sediment
piles, groundgear tracks) and over a number days or
weeks would improve the mechanistic understanding of
effects on biogeochemical processes and their recovery from
a trawling event.

Although this study focused on the short term effects
of a single passage of a small trawl, it highlights the
potential for larger and longer-term effects in areas where
disturbance by commercial trawling is frequent. Not only
may seabed biogeochemical processes not have sufficient time
to re-equilibrate between trawling events, but trawl-induced
turbidity in the bottom water may be semi-permanent in
areas with high trawling intensity and affect local, or even
regional, nutrient and element cycling. According to the
Marine Strategy Framework Directive (EU, 2008), “seafloor
integrity” (i.e., physical, chemical and biological characteristics,
ecosystem processes, and spatial connectivity; Rice et al., 2012)
shall be safeguarded in order to ensure “good environmental
status,” i.e., a state where “the structure and functions of
the ecosystems are safeguarded and benthic ecosystems, in
particular, are not adversely affected” (EU, 2017). In addition,
hydrographical conditions should not be altered in a way
that adversely affect marine ecosystems. It is clear from our
study that bottom trawling has the potential to affect physical,
chemical and biological aspects of seafloor integrity, as well as
water quality (i.e., hydrographical conditions) both within and
outside trawled areas.
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